Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T21:00:57.208Z Has data issue: false hasContentIssue false

W-band beam-steerable MEMS-based reflectarray

Published online by Cambridge University Press:  01 September 2011

Simone Montori*
Affiliation:
Department of Electronic and Information Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy. Phone: + 39 0755853832.
Elisa Chiuppesi
Affiliation:
Department of Electronic and Information Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy. Phone: + 39 0755853832.
Paola Farinelli
Affiliation:
Department of Electronic and Information Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy. Phone: + 39 0755853832.
Luca Marcaccioli
Affiliation:
Department of Electronic and Information Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy. Phone: + 39 0755853832.
Roberto Vincenti Gatti
Affiliation:
Department of Electronic and Information Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy. Phone: + 39 0755853832.
Roberto Sorrentino
Affiliation:
Department of Electronic and Information Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy. Phone: + 39 0755853832.
*
Corresponding author: S. Montori Email: [email protected]

Abstract

This paper presents recent advances on reconfigurable reflectarrays at the University of Perugia. In particular, the activities carried out in the framework of the FP7 project ARASCOM (“MEMS and Liquid Crystal based” Agile Reflectarray Antennas for Security and COMmunication). As for ARASCOM outcomes, the purpose of the project is the design of a very large reconfigurable reflectarray controlled with micro-electro-mechanical systems (MEMS) for mm-wave imaging system at 76.5 GHz. A system with sufficient resolution to detect concealed weapons impose challenging requirements on the antenna, which shall be made of hundreds of thousands elements. The problem has been addressed by exploiting some innovative solutions and architectures that will be described in this document. In particular, the dimensioning of the reflectarray, the proposed 1-bit geometry of elementary cell, and the innovative biasing control architecture are reported together with the MEMS design and fabrication and the experimental results of a demonstrating board that validated the adopted procedure.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Martynyuk, A.E.; Martinez Lopez, J.I.; Martynyuk, N.: ‘Spiraphase-type reflectarrays based on loaded ring slot resonators’. IEEE Trans. Antennas Propag., 52 (2004), 142153.CrossRefGoogle Scholar
[2]Encinar, J.A.: Design of two-layer printed reflectarrays using patches of variable size. IEEE Trans. Antennas Propag., 49 (10) (2001), 14031410.CrossRefGoogle Scholar
[3]Cadoret, D.; Laisne, A.; Gillard, R.; Le Coq, L.; Legay, H.: Design and measurement of new reflectarray antenna using microstrip patches loaded with slot. Electron. Lett., 41 (11) (2005), 623624.CrossRefGoogle Scholar
[4]Encinar, J.A. et al. : Dual-polarization dual-coverage reflectarray for space applications. IEEE Trans. Antennas Propag., 54 (10) (2006), 28272837.CrossRefGoogle Scholar
[5]Hsu, S.; Han, C.; Huang, J.; Chang, K.: An offset linear-array-fed Ku/Ka dual-band reflectarray for planet cloud/precipitation radar. IEEE Trans. Antennas Propag., 55 (11) (2007), 31143122.CrossRefGoogle Scholar
[6]Moustafa, L.; Gillard, R.; Peris, F.; Loison, R.; Legay, H.; Girard, E.: The phoenix cell: a new reflectarray cell with large bandwidth and rebirth capabilities. IEEE Antennas Wirel. Propag. Lett., 10 (2011), 7174.CrossRefGoogle Scholar
[7]Pozar, D.M.: Wideband reflectarrays using artificial impedance surfaces. Electron. Lett., 43 (3) (2007), 148149.CrossRefGoogle Scholar
[8]Ryan, C.G.M.; Chaharmir, M.R.; Shaker, J.; Bray, J.R.; Antar, Y.M.M.; Ittipiboon, A.: A wideband transmitarray using dual-resonant double square rings. IEEE Trans. Antennas Propag., 58 (5) (2010), 14861493.CrossRefGoogle Scholar
[9]Carrasco, E.; Barba, M.; Encinar, J.: Design and validation of gathered elements for steerable-beam reflectarrays based on patches aperture-coupled to delay lines. IEEE Trans. Antennas Propag., 59 (2011), 17561761.CrossRefGoogle Scholar
[10]Menzel, W.; Al-Tikriti, M.; Leberer, R.: A 76 GHz multiple-beam planar reflector antenna, in 32nd EuMC, European Microwave Conf., Milan, Italy, 23–27 September 2002.Google Scholar
[11]Menzel, W.; Pilz, D.; Al-Tikriti, M.: Millimeter-wave folded reflector antenna with high gain, low loss, and low profile, in IEEE AP Magazine, June 2002, pp. 2429.Google Scholar
[12]Hu, W. et al. : Tunable liquid crystal reflectarray patch element. Electron. Lett., 42 (9) ( 2006), 509511.CrossRefGoogle Scholar
[13]Hu, W. et al. : Liquid-crystal-based reflectarray antenna with electronically switchable monopulse patterns. Electron. Lett., 43 (14) (2007), 825828.CrossRefGoogle Scholar
[14]Bildik, S.; Fritzsch, C.; Moessinger, A.; Jakoby, R.: Tunable liquid crystal reflectarray with rectangular elements, In German Microwave Conf., 2010.Google Scholar
[15]Hum, S.V.; Okoniewski, M.; Davies, R.J.: Realizing an electronically tunable reflectarray using varactor diode-tuned elements. IEEE Microw. Wirel. Compon. Lett., 15 (6) (2005), 422424.CrossRefGoogle Scholar
[16]Sievenpiper, D.F.; Schaffner, J.H.; Song, H.J.; Loo, R.Y.; Tangonan, G.: Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans. Antennas Propagat., 51 (10) (Part 1) (2003), 2713–272.CrossRefGoogle Scholar
[17]Hum, S.V.; Okoniewski, M.; Davies, R.J.: An evolvable antenna platform based on reconfigurable reflectarrays, evolvable hardware, 2005, in Proc. 2005 NASA/DoD Conf. on Evolvable Hardware, 2005. 29 June–1 July 2005, 139146.CrossRefGoogle Scholar
[18]Lau, J.Y.; Hum, S.V.: A planar reconfigurable aperture with lens and reflectarray modes of operation. IEEE Trans. Microw. Theory Tech., 58 (12) ( 2010), 35473555.Google Scholar
[19]Perruisseau-Carrier, J.: Dual-polarized and polarization-flexible reflective cells with dynamic phase control. IEEE Trans. Antennas Propag., 58 (5) (2010), 14941502.CrossRefGoogle Scholar
[20]Boccia, L.; Amendola, G.; Di Massa, G.: Performance improvement for a varactor-loaded reflectarray element. IEEE Trans. Antennas Propag., 58 (2) (2010), 585589.CrossRefGoogle Scholar
[21]Gianvittorio, John P.; Rahmat-Samii, Yahya.: Reconfigurable patch antennas for steerable reflectarray applications. IEEE Trans. Antennas Propag., 54 (5) (2006).CrossRefGoogle Scholar
[22]Legay, H.; Pinte, B.; Charrier, M.; Ziaei, A.; Girard, E.; Gillard, R.: A steerable reflectarray antenna with MEMS controls, in IEEE Int. Symp. on Phased Array Systems and Technology, 2003, 14–17, (2003) 494499.CrossRefGoogle Scholar
[23]Hum, S.V.; McFeetors, G.; Okoniewski, M.: Integrated MEMS reflectarray elements, in EuCAP 06, Nice, 6–10 November 2006.Google Scholar
[24]Legay, H. et al. : MEMS controlled phase shift elements for a linear polarized reflectarray, in 28th ESA Antenna Workshop on Satellite Antenna Technology, ESTEC, Noordwijk, The Netherlands, 31 May–3 June 2005.Google Scholar
[25]Legay, H.; Cailloce, Y.; Vendier, O.; Paillard, M.; Caille, G.: Satellite antennas based on MEMS tunable reflectarrays, in Second European Conf. on Antennas and Propagation, Edimburgh, UK, 11–16 November 2007.Google Scholar
[26]Rajagopalan, H.; Rahmat-Samii, Y.; Imbriale, W.A.: RF MEMS actuated reconfigurable reflectarraypatch-slot element. IEEE Trans. Antennas Propag., 56 (12) (2008), 36893699.CrossRefGoogle Scholar
[27]Chih-Chieh, Cheng. Abbaspour-Tamijani, A.: Evaluation of a novel topology for MEMS programmable reflectarray antennas. IEEE Trans. Microw. Theory Tech., 57 (12) (Part 2) (2009), 33333344.CrossRefGoogle Scholar
[28]Salti, H.; Fourn, E.; Gillard, R.; Girard, E.; Legay, H.: Pharmacist cross phase-shifting cell loaded with MEMS switches for reconfigurable reflectarrays, in Proc. Fourth European Conf. on Antennas and Propagation (EuCAP), 2010, 2010, 14.Google Scholar
[29]Pereira, R.; Gillard, R.; Sauleau, R.; Potier, P.; Dousset, T.; Delestre, X.: Four-state dual polarisation unit-cells forreflectarray applications. Electron. Lett., 46 (11) (2010), 742743.CrossRefGoogle Scholar
[30]Perruisseau-Carrier, J.; Skrivervik, A.K.; Monolithic MEMS-based reflectarray cell digitally reconfigurable over a 360° phase range. IEEE Antennas Wirel. Propag. Lett., 7 (2008), 138141.Google Scholar
[31]Carrasco, E.; Barba, M.; Encinar, J.A.: Reflectarray element based on aperture-coupled patches with slots and lines of variable length. IEEE Trans. Antennas Propag., 55 (3) (2007), 667668.CrossRefGoogle Scholar
[32]Carrasco, S.; Barba, A.; Encinar, L.: Aperture-coupled reflectarray element with wide range of phase delay. Electron. Lett., 42 (12) (2006), 667668.CrossRefGoogle Scholar
[33]Avrillon, S.; Pothier, A.; Mercier, L.; Blondy, P.: A novel reflectarray using integrated band reject filters, in 35th EuMC, Paris, 3–7 October 2005.Google Scholar
[34]Mencagli, B.; Vincenti Gatti, R.; Marcaccioli, L.; Sorrentino, R.: Design of large mm-wave beam-scanning reflectarrays, in 35th EuMC, European Microwave Conf., Paris, France, 3–7 October 2005.Google Scholar
[35]Trampuz, C.; Hajian, M.; Ligthart, L.P.: Design, analysis and measurements of reflected phased array microstrip antennas at Ka-band, using hollow phasing, in European Radar Conf., 2006, Manchester, September 2006, 5760.CrossRefGoogle Scholar
[36]Apert, C.; Koleck, T.; Dumon, P.; Dousset, T.; Renard, C.: ERASP: a new reflectarray antenna for space applications, in EuCAP 06, Nice, 6–10 November 2006.Google Scholar
[37]Riel, M.; Laurin, J.-J.: Design of an electronically beam scanning reflectarray using aperture-coupled elements. IEEE Trans. Antennas Propag., 55 (5) (2007), 12601266.CrossRefGoogle Scholar
[38]Marin, R.; Mossinger, A.; Freese, J.; Muller, S.; Jakoby, R.: Basic investigations of 35 GHz reflectarrays and tunable unit-cells for beamsteering applications, in EURAD 2005, Paris, France, 6–7 October 2005, 291294.Google Scholar
[39]Siegel, C.M.; Ziegler, V.; Schönlinner, B.; Prechtel, U.; Schumacher, H.: Patches with slots and lines of variable length, in MEMSWAVE 2007, Barcelona, Spain, June 26–29, 2007.Google ScholarPubMed
[40]Schaffner, J.H.; Sievenpiper, D.F.; Loo, R.Y.; Lee, J.J.; Raytheon, S.W.L.: A wideband beam switching antenna using RF MEMS switches, in AP-S Int. Symp. Digest, vol. 3, 2001, pp. 658661.Google Scholar
[41]Richards, R.J.: Integrated Microelectromechanical Phase Shifting Reflect Array Antenna, Patent US 6195047, February 2001.Google Scholar
[42]Béatrice, Pinte et al. : A reflectarray Antenna in Ka band with MEMS control, in ANTEM 2004, July 2004.Google Scholar
[43]Gilbert, R.: Dipole Tunable Reconfigurable Reflector Array, Patent US 2001/0050650, December 2001.Google Scholar
[44]Hsu, H.-P.; Hsu, T.-Y.: Optically Controlled RF MEMS Switch Array for Configurable Broadband Reflective Antennas, Patent US 6417807, July 2002.Google Scholar
[45]Legay, H. et al. : MEMS controlled linearly polarised reflect array elements, in 12th Int. Symp. on Antenna Technology and Applied Electromagnetics (ANTEM), Montréal, 16–19 July 2006.Google Scholar
[46]Sorrentino, R.; Vincenti Gatti, R.; Marcaccioli, L.; Mencagli, B.: Beam steering reflectarrays, in 4th ESA Workshop on Millimetre Wave Technology and Applications, Espoo, Finland, 15–17 February 2006.Google Scholar
[47]Marcaccioli, L. et al. : Beam steering MEMS mm-wave reflectarrays, in MEMSWAVE 2006, Orvieto, Italy, June 27–30, 2006.Google Scholar
[48]Mencagli, B. et al. : Design and realization of a MEMS tuneable reflectarray for mm-wave imaging application, in MEMSWAVE 2007, Barcelona, Spain, June 26–29, 2007.Google Scholar
[49]Sorrentino, R.: MEMS-based reconfigurable reflectarrays, in Invited paper at the Second European Conf. on Antennas and Propagation, 2007. EuCAP 2007, EICC, Edinburgh, UK, 11–16 November 2007, 17.Google Scholar
[50]Sorrentino, R.: Reconfigurable reflectarrays based on RF MEMS technology, in Invited paper at the Microwaves, Radar and Remote Sensing Symp., MRRS 2008, Kiev, Ukraine, 22–September 24, 2008.Google Scholar
[51]Profera, J.R.; Charles, E.: Active Reflectarray Antenna for Communication Satellite Frequency Re-Use, US Patent 5280297, January 1994.Google Scholar
[52]Bialkowski, M.E.; Robinson, A.W.; Song, H.J.: ‘Design, development, and testing of X-band amplifying reflectarryas’. IEEE Trans. Antennas Propag, (2002), 50 (8) 10651076.CrossRefGoogle Scholar
[53]Cabria, L.; Garcia, J.A.; Tazon, A.; Vassal'lo, J.: An active reflectarray with beamsteering capabilities, in ICECom 2005, 12–14 October 2005.Google Scholar
[54]Cabria, L.; Garcia, J.A.; Tazon, A.; Mediavilla, A.; Vassal'lo, J.: A simple vector control unit for low cost active reflectarray applications, In COST 284 Paper at INICA, Berlin, 17–19 September 2003.Google Scholar
[56]El Gannudi, H.; Vincenti Gatti, R.; Tomassoni, C.; Sorrentino, R.: Preliminary design of foldable reconfigurable reflectarray for Ku-band satellite communication, in Proc. of EuCAP 2010.Google Scholar
[57]Montori, S. et al. : Wideband dual-polarization reconfigurable elementary cell for electronic steerable reflectarray at Ku-band, in Proc. of EuCAP 2010.Google Scholar
[59]Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd ed., Wiley-Interscience, New York, 2005.Google Scholar
[60]Marcaccioli, L.; Montori, S.; Gatti, R.V.; Chiuppesi, E.; Farinelli, P.; Sorrentino, R.: RF MEMS-reconfigurable architectures for very large reflectarray antennas, in Asia Pacific Microwave Conf., 2009, APMC, 2009.Google Scholar