Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-16T03:26:28.618Z Has data issue: false hasContentIssue false

Toward highly scaled AlN/GaN-on-Silicon devices for millimeter wave applications

Published online by Cambridge University Press:  02 May 2013

Farid Medjdoub*
Affiliation:
Institute of Electronic, Microelectronic and Nanotechnology (IEMN – CNRS), Villeneuve d'Ascq, France
Yoann Tagro
Affiliation:
Institute of Electronic, Microelectronic and Nanotechnology (IEMN – CNRS), Villeneuve d'Ascq, France
Bertrand Grimbert
Affiliation:
Institute of Electronic, Microelectronic and Nanotechnology (IEMN – CNRS), Villeneuve d'Ascq, France
Damien Ducatteau
Affiliation:
Institute of Electronic, Microelectronic and Nanotechnology (IEMN – CNRS), Villeneuve d'Ascq, France
Nathalie Rolland
Affiliation:
Institute of Electronic, Microelectronic and Nanotechnology (IEMN – CNRS), Villeneuve d'Ascq, France
*
Corresponding author: F. Medjdoub Email: [email protected]

Abstract

In this work, the possibility of achieving GaN-on-Si devices for millimeter wave applications operating at high bias is demonstrated. It is shown that highly scaled AlN/GaN-on-Si double heterostructure enables us to significantly improve electron confinement under high electric field as compared to single heterostructure while delivering high carrier density (>2 × 1013 cm−2). Subsequently, trapping effects can be minimized resulting in the highest GaN-on-Si output power density up to 40 GHz and at a drain bias of 15 V together with a record fmax close to 200 GHz. At higher bias, infrared camera analysis clearly shows that these devices are mainly limited by self-heating effects. Furthermore, low noise figure has been assessed on this heterostructure, promising integration of cost effective low noise and high power millimeter wave amplifiers.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Chyurlia, P.N. et al. : Electron. Lett., 46 (2010), 253.Google Scholar
[2]Awano, Y.; Kosugi, M.; Kosemura, K.; Mimura, T.; Abe, M.: IEEE Trans. Electron Devices, 36 (1989), 2260.CrossRefGoogle Scholar
[3]Jessen, G.H. et al. : IEEE Trans. Electron Devices, 54 (2007), 2589.Google Scholar
[4]Kuzmik, J.: IEEE Electron Device Lett., 22 (2001), 510.Google Scholar
[5]Medjdoub, F. et al. : Proc. IEDM Tech. Dig., San Francisco, 2006.Google Scholar
[6]Medjdoub, F. et al. : Proc. DRC Conf. Dig., South Bend, IN, 2007.Google Scholar
[7]Sun, H. et al. : IEEE Electron Device Lett., 31 (2010), 293.Google Scholar
[8]Medjdoub, F.; Zegaoui, M.; Rolland, N.; Rolland, P.A.: Appl. Phys. Lett., 98 (2011), 223502.Google Scholar
[9]Bahat-Treidel, E.; Hilt, O.; Brunner, F.; Würfl, J.; Tränkle, G.: IEEE Trans. Electron Devices, 55 (2008), 3354.Google Scholar
[10]Micovic, M. et al. : Proc. of IEDM Tech. Dig, San Francisco, 2004, 807.Google Scholar
[11]Ducatteau, D.; Werquin, M.; Grimbert, B.; Morvan, E.; Theron, D.: Proc. IEEE Instrumentation and Measurement Technology Conf., Warsaw, Poland, 2007.Google Scholar
[12]Boudiaf, A.; Laporte, M.: IEEE Trans. Instrum. Meas., 42 (1993), 532.Google Scholar
[13]Fukui, H.: IEEE Trans. Microw. Theory Tech., 27 (1979), 643.Google Scholar
[14]Sanabria, C.; Chakraborty, A.; Xu, H.; Rodwell, M.J.; Mishra, U.K.; York, R.A.: IEEE Electron Device Lett., 27 (2006), 19.Google Scholar