Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T14:40:37.907Z Has data issue: false hasContentIssue false

Theoretical investigation of an air gap tuned superconducting triangular microstrip antenna

Published online by Cambridge University Press:  03 June 2013

Ouarda Barkat*
Affiliation:
Electronics Department, University of Constantine 1, 25000 Constantine, Algeria
*
Corresponding author: O. Barkat Email: [email protected]

Abstract

An analytical model is presented to improve the performance of the equilateral triangular microstrip antenna (ETMA). An improved model is presented taking into account the insertion of an air gap between the substrate and the ground plane, and High Tc superconducting material (HTS) for the triangular patch. The full-wave spectral domain technique in conjunction with the complex resistive boundary condition is used to calculate the characteristics including resonant frequencies, bandwidths, and radiation efficiency. Numerical results for the air gap tuning effect on the operating frequency and bandwidth of the high Tc superconducting triangular microstrip antenna (HTSTMA) are presented. The effect of temperature on resonant frequency and bandwidth of the HTSTMA are also given. The computed data are found to be in good agreement with results obtained using other methods.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Sumantyo, J.T.S.; Ito, K.; Takahashi, M.: Dual-band circularly polarized equilateral triangular patch array antenna for mobile satellite communications. IEEE Trans. Antennas Propag., 53 (2005), 34773485.Google Scholar
[2]Helszajn, J.; James, D.S.: Planar triangular resonators with magnetic walls. IEEE Trans. Microw. Theory Tech., MTT-26 (1978), 95100.Google Scholar
[3]Hansen, R.C.: Electrically Small, Superdirective, and Superconducting Antennas, John Wiley & Sons, Inc, Hoboken, New Jersey, 2006.Google Scholar
[4]Barkat, O.; Benghalia, A.: Radiation and resonant frequency of superconducting annular ring microstrip antenna on uniaxial anisotropic media. J. Infrared Millim. Terahertz Waves, 30 (2009), 10531066.Google Scholar
[5]Richard, M.A.; Bhasin, K.B.; Claspy, P.C.: Superconducting microstrip antennasd: an experimental comparison of two feeding methods. IEEE Trans. Antennas Propag., 41 (1993), 967974.Google Scholar
[6]Cai, Z.; Bornemann, J.: Generalized spectral domain analysis for multilayered complex media and High T c superconductor application. IEEE Trans. Microw. Theory Tech., 40 (1992), 22512257.Google Scholar
[7]Dahele, J.S.; Lee, K.F.: Theory and experiments on microstrip antennas with air gaps. Proc. Inst. Electr. Eng., H., 132 (1985), 455460.Google Scholar
[8]Lee, K.F.; Luc, K.H.; Dahele, J.S.: Characteristics of the equilateral triangular patch antenna. IEEE Trans. Antennas Propag., 36 (1988), 15101518.Google Scholar
[9]Biswas, M.; Guha, D.: Input impedance and resonance characteristics of the superstrate–loaded triangular microstrip patch. IET Microw. Antennas propag., 3 (2009), 9298.Google Scholar
[10]Hassani, H.R.; Syahkal, D.M.: Analysis of triangular patch antennas including radome effects. IEE Proc., 139 (1992), 251256.Google Scholar
[11]Staraj, R.; Cambiaggio, E., Papiernik, A.: Infinite phased arrays of microstrip antennas with parasitic elements: application to bandwidth enhancement. IEEE Antennas Propag., 42 (1994), 742746.Google Scholar
[12]Nachit, A.; Foshi, J.: Spectral domain integral equation approach of an equilateral triangular microstrip antenna using the moment method. Journal of Microwaves and Optoelectronics., 2 (2000), 113.Google Scholar
[13]Chen, W.; Lee, K.F.; Dahele, S.: Theoretical and experimental studies of the resonant frequencies of the equilateral triangular microstrip antenna. IEEE. Antennas Propag., 40 (1992), 12531256.Google Scholar
[14]Nasimuddin.; Esselle, K.; Verma, A.K.: Resonance frequency of an equilateral triangular microstrip antenna. Microw. Opt. Technol. Lett., 47 (2005), 485489.Google Scholar
[15]Guha, D.; Siddiqui, J.Y.: Resonance frequency of equilateral triangular microstrip antenna with and without air gap. IEEE Trans. Antennas Propag., 52 (2004), 21742177.Google Scholar
[16]Dreher, A.: A new approach to dyadic Green's function in spectral domain. IEEE Trans. Antennas Propag., 43 (1995), 12971302.Google Scholar
[17]Das, N.K.; Pozar, D.M.: A generalized spectral-domain Green's function for multilayer dielectric substrates with application to multilayer transmission lines. IEEE Trans. Microw. Theory Tech., MTT-35 (1987), 326335.Google Scholar
[18]Bouttout, F.; Benabdelaziz, F., Fortaki, T.; Khedrouche, D.: Resonant frequency and bandwidth of a superstrateloaded rectangular patch on a uniaxial anisotropic substrate. Commun. Numer. Methods Eng., 16 (2000), 459473.Google Scholar
[19]Chew, W.C.; Liu, Q.: Resonance frequency of a rectangular microstrip patch. IEEE Trans. Antennas Propag., 36 (1988), 10451056.Google Scholar
[20]Gorter, J.C.; Casimir, H.B.G.: The Thermodynamics of the superconducting state. Phys. Z., 35 (1934), 963966.Google Scholar
[21]Porch, A.; Lancaster, M.J.; Humphreys, R.G.: The coplanar resonator technique for determining the surface impedance of YBa2Cu3O7-d thin film. IEEE Trans. Microw. Theory Tech., 43 (1995), 306314.Google Scholar
[22]Cho, S.: Inductance measurements in YBa2Cu3O7-x thin films. Supercond. Sci. Tech., 10 (1997), 594597.Google Scholar
[23]Silva, S.G.; D'assuncao, A.G.: Oliveira, J.R.S.: Analysis of high Tc superconducting microstrip antennas and arrays. Proc. SBMO/IEEE MTT-SIMOC, 2 (1999), 243246.Google Scholar
[24]Sekiya, N.; Kubota, A.; Kondo, A.; Hirano, S.; Saito, A.; Ohshima, S.: Broadband superconducting microstrip patch antenna using additional gap-coupled resonators. Physica C., 445–448 (2006), 994997.Google Scholar
[25]EL-Ghazaly, S.M.; Hammond, R.B.; Itoh, T.: Analysis of superconducting microwave structures: application to microstrip lines. Trans. Microw. Theory Tech., 40 (1992), 499508.Google Scholar