Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T11:20:10.774Z Has data issue: false hasContentIssue false

A symmetric bar chart-shape microwave sensor with high Q-factor for permittivity determination of fluidics

Published online by Cambridge University Press:  13 March 2023

Moein Navaei
Affiliation:
Electrical Engineering, Semnan University, Semnan, Iran
Pejman Rezaei*
Affiliation:
Professor of Electrical Engineering, Semnan University, Semnan, Iran
Sina Kiani
Affiliation:
Electrical Engineering, Semnan University, Semnan, Iran
*
Author for correspondence: Pejman Rezaei, E-mail: [email protected]

Abstract

This paper introduces a symmetric bar chart-shape (SBCS) microwave sensor for measuring permittivity of fluidic samples. For designing purposes, the introduced sensor was used based on the field changes between the SBCS and rectangular loop microstrip (RLM) structure. When a sample is placed on the sensing location, interaction between SBCS and RLM varies the field intensity. The vinegar samples were combined with water and then they are placed on the sensor. The change in field intensity changes the resonance frequency. However, there is a relationship between the permittivity of samples and the resonance frequencies. The proposed sensor is implemented on the substrate of RO4003C. The relative permittivity of samples changed from 59 to 77 and the resonance frequencies changed from 2.3 to 1.4 GHz. The quality factor is 3544 and the sensitivity is 2.2%.

Type
RFID and Sensors
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Raveendran, A and Raman, S (2021) Low cost multifunctional planar RF sensors for dielectric characterization and quality monitoring. IEEE Sensors Journal 21, 2405624065.10.1109/JSEN.2021.3114257CrossRefGoogle Scholar
Mohammadi, P, Mohammadi, A, Demir, S and Kara, A (2021) Compact size, and highly sensitive, microwave sensor for non-invasive measurement of blood glucose level. IEEE Sensors Journal 21, 1603316042.10.1109/JSEN.2021.3075576CrossRefGoogle Scholar
Nishio, K, Kaburagi, T, Hamada, Y, Matsumoto, T, Kumagai, S and Kurihara, Y (2021) Construction of an aggregated fall detection model utilizing a microwave Doppler sensor. IEEE Internet of Things Journal 9, 20442055.10.1109/JIOT.2021.3089520CrossRefGoogle Scholar
Kiani, S, Rezaei, P and Fakhr, M (2023) On-chip coronavirus shape antenna for wide band applications in terahertz band. Journal of Optics, 18. doi: 10.1007/s12596-022-01048-y.Google Scholar
Ramella, C, Pirola, M and Corbellini, S (2021) Accurate characterization of high-Q microwave resonances for metrology applications. IEEE Journal of Microwaves 1, 610624.10.1109/JMW.2021.3063247CrossRefGoogle Scholar
Tariq, R, Ye, M, Zhao, X, Zhang, S, Cao, Z and He, Y (2021) Microwave sensor for detection of ice accretion on base station antenna radome. IEEE Sensors Journal 21, 1873318741.10.1109/JSEN.2021.3089320CrossRefGoogle Scholar
Yashchyshyn, Y, Derzakowski, K, Wu, C and Cywiński, G (2021) W-band sensor for complex permittivity measurements of rod shaped samples. IEEE Access 9, 111125111131.10.1109/ACCESS.2021.3103243CrossRefGoogle Scholar
Buragohain, A, Mostako, A and Das, G (2021) Low-cost CSRR based sensor for determination of dielectric constant of liquid samples. IEEE Sensors Journal 21, 2745027457.10.1109/JSEN.2021.3124329CrossRefGoogle Scholar
Sepulveda, L, Cervantes, J and Saavedra, C (2021) Multifrequency coupled-resonator sensor for dielectric characterization of liquids. IEEE Transactions on Instrumentation and Measurement 70, 17.10.1109/TIM.2021.3122116CrossRefGoogle Scholar
Armghan, A, Alanazi, T, Altaf, A and Haq, T (2021) Characterization of dielectric substrates using dual band microwave sensor. IEEE Access 9, 6277962787.10.1109/ACCESS.2021.3075246CrossRefGoogle Scholar
Velez, P, Enano, J, Ebrahimi, A, Herrojo, C, Paredes, F, Scott, J, Ghorbani, K and Martin, F (2021) Single-frequency amplitude-modulation sensor for dielectric characterization of solids and microfluidics. IEEE Sensors Letters 21, 1218912201.10.1109/JSEN.2021.3062290CrossRefGoogle Scholar
Navaei, M, Rezaei, P and Kiani, S (2023) Measurement of low-loss aqueous solutions permittivity with high detection accuracy by a contact and free-label resonance microwave sensor. International Journal of Communication Systems 36, e5417.10.1002/dac.5417CrossRefGoogle Scholar
Zheng, X, Pan, Y and Jiang, T (2018) UWB bandpass filter with dual notched bands using T-shaped resonator and L-shaped defected microstrip structure. Micromachines 9, 280290.10.3390/mi9060280CrossRefGoogle ScholarPubMed
Xuemei, Z and Jiang, T (2019) Triple notches bandstop microstrip filter based on Archimedean spiral electromagnetic bandgap structure. Electronics 8, 964978.Google Scholar
Kiani, S, Rezaei, P, Karami, M and Sadeghzadeh, R (2019) Band-stop filter sensor based on SIW cavity for the non-invasive measuring of blood glucose. IET Wireless Sensor Systems 9, 15.10.1049/iet-wss.2018.5044CrossRefGoogle Scholar
Gharbi, M, Estrada, M, Garcia, R and Gil, I (2021) Determination of salinity and sugar concentration by means of a circular-ring monopole textile antenna-based sensor. IEEE Sensors Journal 21, 2375123760.10.1109/JSEN.2021.3112777CrossRefGoogle Scholar
Molina, O, Giraldo, J and Vera, E (2021) Strain sensor based on rectangular microstrip antenna: numerical methodologies and experimental validation. IEEE Sensors Journal 21, 2290822917.10.1109/JSEN.2021.3107136CrossRefGoogle Scholar
Kiani, S, Rezaei, P and Fakhr, M (2021) A CPW-fed wearable antenna at ISM band for biomedical and WBAN applications. Wireless Networks 27, 735745.10.1007/s11276-020-02490-1CrossRefGoogle Scholar
Zhu, C, Tang, Y, Guo, J, Gerald, R and Huang, J (2021) High-temperature and high-sensitivity pressure sensors based on microwave resonators. IEEE Sensors Journal 17, 1878118792.10.1109/JSEN.2021.3091589CrossRefGoogle Scholar
Baskakova, A and Hoffmann, K (2021) Novel waveguide sensors for contactless ultrashort-distance measurements. IEEE Transactions on Microwave Theory and Techniques 70, 565575.10.1109/TMTT.2021.3107503CrossRefGoogle Scholar
Bao, X, Zhou, Z and Wang, Y (2021) Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection. PhotoniX 2, 129.10.1186/s43074-021-00038-wCrossRefGoogle ScholarPubMed
Kiani, S, Rezaei, P, Navaei, M and Abrishamian, M (2018) Microwave sensor for detection of solid material permittivity in single/multilayer samples with high quality factor. IEEE Sensors Journal 18, 99719977.10.1109/JSEN.2018.2873544CrossRefGoogle Scholar
Mohammadi, P, Teimouri, H, Mohammadi, A, Demir, S and Kara, A (2021) Dual band, miniaturized permittivity measurement sensor with negative-order SIW resonator. IEEE Sensors Journal 21, 2269522702.10.1109/JSEN.2021.3110611CrossRefGoogle Scholar
Kiani, S, Rezaei, P and Fakhr, M (2021) Dual-frequency microwave resonant sensor to detect noninvasive glucose-level changes through the fingertip. IEEE Transactions on Instrumentation and Measurement 70, 18.10.1109/TIM.2021.3052011CrossRefGoogle Scholar
Kiani, S, Rezaei, P and Navaei, M (2020) Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection. Measurement 160, 18.10.1016/j.measurement.2020.107805CrossRefGoogle Scholar
Mohammadi, S, Adhikari, K, Jain, M and Zarifi, M (2021) High-resolution, sensitivity-enhanced active resonator sensor using substrate-embedded channel for characterizing low-concentration liquid mixtures. IEEE Transactions on Microwave Theory and Techniques 70, 576586.10.1109/TMTT.2021.3109599CrossRefGoogle Scholar
Baghelani, M, Hosseini, N and Daneshmand, M (2021) Non-contact real-time water and brine concentration monitoring in crude oil based on multi-variable analysis of microwave resonators. Measurement 177, 110.10.1016/j.measurement.2021.109286CrossRefGoogle Scholar
Baskakova, A and Hoffmann, K (2021) On the optimal modes for glucose droplet sensing based on multi-modes. IEEE Sensors Journal 21, 2404824055.Google Scholar
Omer, A, Shaker, G and Naeini, S (2021) PCA-assisted blood glucose monitoring using metamaterial-inspired sensor. IEEE Sensors Letters 5, 14.10.1109/LSENS.2021.3109101CrossRefGoogle Scholar
Abdolrazzaghi, M, Katchinskiy, N, Elezzabi, A, Light, P and Daneshmand, M (2021) Noninvasive glucose sensing in aqueous solutions using an active split-ring resonator. IEEE Sensors Journal 21, 1874218755.10.1109/JSEN.2021.3090050CrossRefGoogle Scholar
Piekarz, I, Wincza, K, Gruszczynski, S and Sorocki, J (2021) Detection of methanol contamination in ethyl alcohol employing a purpose-designed high-sensitivity microwave sensor. Measurement 174, 108993.10.1016/j.measurement.2021.108993CrossRefGoogle Scholar
Dalgac, S, Akdogan, V, Kiris, S, Incesu, A, Akgol, O, Unal, E, Basar, M and Karaaslan, M (2021) Investigation of methanol contaminated local spirit using metamaterial based transmission line sensor. Measurement 178, 109360.10.1016/j.measurement.2021.109360CrossRefGoogle Scholar
Jain, S, Tiwari, N and Akhtar, M (2021) CSIWC RF sensor for micro-fluidic non-contact quality assessment of milk. International Journal of RF and Microwave Computer-Aided Engineering 32, 2296222971.Google Scholar
Nguyen, T and Tseng, C (2021) A new microwave humidity sensor with near-field self-injection-locked technology. IEEE Sensors Journal 21, 21520.10.1109/JSEN.2021.3103385CrossRefGoogle Scholar
Javanbakht, N, Xiao, G and Amaya, R (2021) Portable microwave sensor based on frequency-selective surface for grain moisture content monitoring. IEEE Sensors Letters 5, 14.10.1109/LSENS.2021.3115397CrossRefGoogle Scholar
Gugliandolo, G, Naishadham, K, Neri, G, Fernicola, V and Donato, N (2021) A novel sensor-integrated aperture coupled microwave patch resonator for humidity detection. IEEE Transactions on Instrumentation and Measurement 70, 114.10.1109/TIM.2021.3062191CrossRefGoogle Scholar
Cheng, X, Hu, J, Zhu, K and Zhao, Z (2021) High-resolution polymer optical fibre humidity sensor utilizing single-passband microwave photonic filter. Measurement 179, 18.10.1016/j.measurement.2021.109462CrossRefGoogle Scholar
Zhang, X, Ruan, C, Wang, W and Cao, Y (2021) Submersible high sensitivity microwave sensor for edible oil detection and quality analysis. IEEE Sensors Journal 21, 1323013238.10.1109/JSEN.2021.3067933CrossRefGoogle Scholar
Maenhout, G, Markovic, T and Nauwelaers, B (2021) Flexible, segmented tubular design with embedded complementary split-ring resonators for tissue identification. IEEE Sensors Journal 21, 1602416032.10.1109/JSEN.2021.3075570CrossRefGoogle Scholar
Harnsoongnoen, S (2021) Metamaterial-inspired microwave sensor for detecting the concentration of mixed phosphate and nitrate in water. IEEE Transactions on Instrumentation and Measurement 70, 16.10.1109/TIM.2021.3086901CrossRefGoogle Scholar
Kiani, S, Rezaei, P, Karami, M and Sadeghzadeh, R (2018) Substrate integrated waveguide quasi-elliptic bandpass filter with parallel coupled microstrip resonator. Electronics Letters 54, 667668.10.1049/el.2018.0170CrossRefGoogle Scholar
Su, L, Enano, J, Velez, P, Casacuberta, P, Gil, M and Martin, F (2021) Phase-variation microwave sensor for permittivity measurements based on a high-impedance half-wavelength transmission line. IEEE Sensors Letters 21, 1064710656.10.1109/JSEN.2021.3063112CrossRefGoogle Scholar
Herrojo, C, Velez, P, Enano, J, Su, L, Casacuberta, P, Gil, M and Martin, F (2021) Highly sensitive defect detectors and comparators exploiting port imbalance in rat-race couplers loaded with step-impedance open-ended transmission lines. IEEE Sensors Journal 21, 2673126745.10.1109/JSEN.2021.3118088CrossRefGoogle Scholar
Cai, C, Wei, L, Wu, X and Wang, D (2021) A novel gradient thermoelectric microwave power sensors based on GaAs MMIC technology. Microsystem Technologies 27, 243249.10.1007/s00542-020-04942-2CrossRefGoogle Scholar
Yang, Y, Xu, Y, Yuan, C, Wang, J, Wu, H and Zhang, T (2021) Water cut measurement of oil–water two-phase flow in the resonant cavity sensor based on analytical field solution method. Measurement 174, 109078109087.10.1016/j.measurement.2021.109078CrossRefGoogle Scholar
Fu, L, Huang, J, Xiang, Y, Chen, Y, Gu, W and Wu, Y (2021) A miniaturized differential microwave microfluidic sensor with high decoupling. IEEE Microwave and Wireless Components Letters 31, 909912.10.1109/LMWC.2021.3075454CrossRefGoogle Scholar
Baghelani, M (2021) A single-wire microwave sensor for selective water and clay in bitumen analysis at high temperatures. IEEE Transactions on Instrumentation and Measurement 70, 18.Google Scholar
Sorocki, J, Wincza, K, Gruszczynski, S and Piekarz, I (2021) Direct broadband dielectric spectroscopy of liquid chemicals using microwave-fluidic two-wire transmission line sensor. IEEE Transactions on Microwave Theory and Techniques 269, 25692578.10.1109/TMTT.2021.3059646CrossRefGoogle Scholar
Tian, X, Li, L, Chew, S, Gunawan, G, Nguyen, L and Yi, X (2021) Cascaded optical microring resonator based auto-correction assisted high resolution microwave photonic sensor. Journal of Lightwave Technology 39, 76467655.10.1109/JLT.2021.3095336CrossRefGoogle Scholar
Jung, J, Lim, S, Kim, B and Lee, S (2021) CNN-based driver monitoring using millimeter-wave radar sensor. IEEE Sensors Letters 5, 14.10.1109/LSENS.2021.3063086CrossRefGoogle Scholar
Hui, X, Zhou, J, Sharma, P, Conroy, T, Zhang, Z and Kan, E (2021) Wearable RF near-field cough monitoring by frequency-time deep learning. IEEE Transactions on Biomedical Circuits and Systems 15, 756764.10.1109/TBCAS.2021.3099865CrossRefGoogle ScholarPubMed
Guo, J, Wu, X, Liu, J, Wei, T, Yang, X, Yang, X, He, B and Zhang, W (2021) Non-contact vibration sensor using deep learning and image processing. Measurement 183, 11.10.1016/j.measurement.2021.109823CrossRefGoogle Scholar
Lin, Z, Pan, X, Yao, J, Wu, Y, Wang, Z, Zhang, D, Ye, C, Xu, S, Yang, F and Wang, X (2021) Characterization of orbital angular momentum applying single-sensor compressive imaging based on a microwave spatial wave modulator. IEEE Transactions on Antennas and Propagation 69, 68706880.10.1109/TAP.2021.3070067CrossRefGoogle Scholar
Wang, J, Yang, X, Su, P, Wang, Z, Peng, H, Gu, D and Zhou, X (2021) Thickness measurement of magnetic absorbing coating on metallic surface by localized spoof surface plasmon-based sensor. IEEE Sensors Journal 21, 2743327440.10.1109/JSEN.2021.3102065CrossRefGoogle Scholar
Tu, H, Hu, J and Ding, X (2020) Measurement of the conductivity of screen printing films at microwave frequency employing resonant method. Journal of Electronic Materials 50, 521527.10.1007/s11664-020-08594-wCrossRefGoogle Scholar
Wang, H, Liu, X, Xiong, R and Zou, H (2021) Ultrahigh-sensitivity microwave microfluidic sensors based on modified complementary electric-LC and split-ring resonator structures. IEEE Sensors Journal 21, 1875618763.Google Scholar
Cui, Y and Ge, A (2021) Adjustable cancellation type high sensitivity radio frequency sensor. Measurement 168, 108337108342.Google Scholar
Cui, Y and Ge, A (2021) Slow microwave sensor based on engineered 1/x-like function transmission for improved sensitivity. IEEE Transactions on Instrumentation and Measurement 70, 14.Google Scholar
Mansour, E, Allam, A and Rahman, ABA (2023) A novel approach to non-invasive blood glucose sensing based on a single-slot defected ground structure. International Journal of Microwave and Wireless Technologies 15, 3240.10.1017/S1759078722000174CrossRefGoogle Scholar
Enano, JM, Vélez, P, Gil, M and Martín, F (2020) Microfluidic reflective-mode differential sensor based on open split ring resonators (OSRRs). International Journal of Microwave and Wireless Technologies 12, 588597.10.1017/S1759078720000501CrossRefGoogle Scholar
Navaei, M, Rezaei, P and Kiani, S (2022) Microwave split ring resonator sensor for determination of the fluids permittivity with measurement of human milk samples. Radio Science 57, 74357445.10.1029/2022RS007435CrossRefGoogle Scholar
Ebrahimi, A, Withayachumnankul, W, Al-Sarawi, S and Abbott, D (2014) High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors Journal 14, 13451351.10.1109/JSEN.2013.2295312CrossRefGoogle Scholar
Othman, MA, Sinnappa, M, Husain, MN and Ismail, MM (2013) Development of 5.8 GHz microstrip parallel coupled line bandpass filter for wireless communication system. International Journal of Engineering and Technology 5, 32273235.Google Scholar
Liu, Y, Leung WK and Yang, N (2020) Compact absorptive filtering patch antenna. IEEE Transactions on Antennas and Propagation 68, 633642.10.1109/TAP.2019.2938798CrossRefGoogle Scholar
Kiani, S, Rezaei, P and Fakhr, M (2021) An overview of interdigitated microwave resonance sensors for liquid samples permittivity detection. Interdigital Sensors 7, 153197.10.1007/978-3-030-62684-6_7CrossRefGoogle Scholar
Karami, M, Rezaei, P, Kiani, S and Sadeghzadeh, R (2017) Modified planar sensor for measuring dielectric constant of liquid materials. Electronics Letters 53, 13001302.10.1049/el.2017.2481CrossRefGoogle Scholar
Wang, B, Zhao, W, Wang, D, Wang, J, Li, W and Liu, J (2021) Optimal design of planar microwave microfluidic sensors based on deep reinforcement learning. IEEE Sensors Journal 21, 2744127449.10.1109/JSEN.2021.3124294CrossRefGoogle Scholar
Ebrahimi, A, Scott, J and Ghorbani, K (2019) Ultrahigh-sensitivity microwave sensor for microfluidic complex permittivity measurement. IEEE Transactions on Microwave Theory and Techniques 67, 42694277.10.1109/TMTT.2019.2932737CrossRefGoogle Scholar
Abdelwahab, H, Ebrahimi, A, Beziuk, G and Ghorbani, K (2021) Extremely sensitive microwave microfluidic dielectric sensor using a transmission line loaded with shunt LC resonators. Sensors 21, 6811.10.3390/s21206811CrossRefGoogle ScholarPubMed
Wang, C, Liu, X, Huang, Z, Yu, S, Yang, X and Shang, X (2022) A sensor for characterisation of liquid materials with high permittivity and high dielectric loss. Sensors 22, 1764.10.3390/s22051764CrossRefGoogle ScholarPubMed
Mosbah, S, Zebiri, C, Sayad, D, Elfergani, I, Bouknia, ML, Mekki, S, Zegadi, R, Palandoken, M, Rodriguez, J and Abd-Alhameed, RA (2022) Compact and highly sensitive bended microwave liquid sensor based on a metamaterial complementary split-ring resonator. Applied Science 12, 2144.10.3390/app12042144CrossRefGoogle Scholar
Moolat, R, Mani, M, Viswanathan, AP and Pezholil, M (2022) Compact microwave sensor for monitoring aging of oil and fuel adulteration. International Journal of RF and Microwave Computer-Aided Engineering 32, 23095.10.1002/mmce.23095CrossRefGoogle Scholar
Song, X and Yan, S (2022) A sensitivity-enhanced sensor based on zeroth-order resonance for liquid characterization. IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology 6, 391398.10.1109/JERM.2022.3146192CrossRefGoogle Scholar
Loutchanwoot, P and Harnsoongnoen, S (2022) Microwave microfluidic sensor for detection of high equol concentrations in aqueous solution. IEEE Transactions on Biomedical Circuits and Systems 16, 244251.10.1109/TBCAS.2022.3153459CrossRefGoogle ScholarPubMed