Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-30T20:54:11.748Z Has data issue: false hasContentIssue false

Studying the nonlinear performance of an amplifying reflectarray antenna

Published online by Cambridge University Press:  08 January 2016

Iman Aryanian
Affiliation:
Department of Electrical Engineering, Amirkabir University of Technology, Tehran 15914, Iran
Abdolali Abdipour
Affiliation:
Department of Electrical Engineering, Amirkabir University of Technology, Tehran 15914, Iran
Gholamreza Moradi*
Affiliation:
Department of Electrical Engineering, Amirkabir University of Technology, Tehran 15914, Iran
*
Corresponding author: G. Moradi Email: [email protected]

Abstract

In this paper, significance of studying the nonlinear performance of amplifying reflectarray antenna is clarified by showing nonlinear behavior of the unit cell. Furthermore, the procedure for nonlinear analysis of amplifying reflectarray antenna is described and nonlinear analysis is verified by ADS software simulation. Moreover, a typical amplifying reflectarray antenna is designed considering the nonlinear behavior. Nonlinear analysis of the active aperture-coupled patch unit cell is performed using harmonic balance method considering nonlinear model of the amplifier. Then, the effect of nonlinear element in radiation pattern of the antenna is studied. Passive unit cell is simulated using full-wave analysis method considering infinite array approach, and scattering parameters of the unit cell is obtained. Next, these scattering parameters are transformed to admittance parameters and used in obtaining nonlinear response and harmonic distortion of the unit cell containing amplifier. Obtained results show up to 3.4 dB error in predicting pattern of the antenna with linear modeling of the active element.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pozar, D.; Metzler, T.: Analysis of a reflectarray antenna using microstrip patches of variable size. Electron. Lett., 29 (1993), 657658.Google Scholar
[2] Hasani, H.; Kamyab, M.; Mirkamali, A.: Low cross-polarization reflectarray antenna. IEEE Trans. Antennas Propag., 59 (2011), 17521756.Google Scholar
[3] Malfajani, R.S.; Atlasbaf, Z.: Design and implementation of a broadband single-layer reflectarray antenna with large-range linear phase elements, IEEE Antennas Wireless Propag. Lett., 11 (2012), 14421445.Google Scholar
[4] Bialkowski, M.; Song, H.: Dual linearly polarized reflectarray using aperture coupled microstrip patches, Antennas and Propagation Society Int. Symp., Boston, MA, USA, 2001.Google Scholar
[5] Venneri, F.; Costanzo, S.; Massa, G.Di.; Amendola, G.: Aperture-coupled reflectarrays with enhanced bandwidth features. J. Electromagn. Waves Appl., 22 (2008), 15271537.CrossRefGoogle Scholar
[6] Makdissy, T.; Gillard, R.; Fourn, E.; Girard, E.; Legay, H.: Phase-shifting cell for dual linearly polarized reflectarrays with reconfigurable potentialities. IEEE Antennas Wireless Propag., 13, (2013), 1114.Google Scholar
[7] Venneri, F.; Costanzo, S.; Massa, G.Di.: Design and validation of a reconfigurable single varactor-tuned reflectarray. IEEE Trans. Antennas Propag., 61 (2013), 635645.Google Scholar
[8] Bayraktar, O.; Civi, O.A.; Akin, T.: Beam switching reflectarray monolithically integrated with RF MEMS switches. IEEE Trans. Antennas Propag., 60 (2012), 854862.Google Scholar
[9] Riel, M.; Laurin, J.: Design of an electronically beam scanning reflectarray using aperture-coupled elements IEEE Trans. Antennas Propag., 55 (2007), 12601266.CrossRefGoogle Scholar
[10] Venneri, F.; Costanzo, S.; Massa, G.Di.: Reconfigurable aperture-coupled reflectarray element tuned by single varactor diode. Electron. Lett., 48 (2012), 6869.CrossRefGoogle Scholar
[11] Georgiadis, A.; Collado, A.: Nonlinear analysis of a reflectarray cell based on a voltage-controlled oscillator, Antennas and Propagation Society Int. Symp., San Diego, CA, 2008.Google Scholar
[12] Georgiadis, A.; Collado, A.: Active reconfigurable reflectarray based on voltage-controlled oscillators, IEEE Int. Symp. Phased Array Systems and Technology (ARRAY), Waltham, MA, 2010.Google Scholar
[13] Nguyen, B.D.; Pham, K.T.; Tran, V.-S.; Mai, L.; Yonemoto, N.; Kohmura, A. et al. : Electronically tunable reflectarray element based on C-patch coupled to delay line. Electron. Lett., 50 (2014), 11141116.Google Scholar
[14] Perez-Palomino, G.; Florencio, R.; Encinar, J.A.; Barba, M.; Dickie, R.; Cahill, R. et al. : Accurate and efficient modeling to calculate the voltage dependence of liquid crystal based reflectarray cells. IEEE Trans. Antennas Propag., 62 (2014), 26592668.Google Scholar
[15] Kishor, K.K.; Hum, S.V.: An amplifying reconfigurable reflectarray antenna. IEEE Trans. Antennas Propag., 60 (2012), 197205.CrossRefGoogle Scholar
[16] Bialkowski, M.E.; Robinson, A.W.; Song, H.J.: Design, development, and testing of X-band amplifying reflectarrays. IEEE Trans. Antennas Propag., 50 (2002), 10651076.Google Scholar
[17] Clark, R.W.; Huff, G.H.; Bernhard, J.T.: An integrated active microstrip reflectarray element with an internal amplifier IEEE Trans. Antennas Propag., 51 (2003), 993999.Google Scholar
[18] Antognetti, P.; Massobrio, G.; Massobrio, G.: Semiconductor Device Modeling with SPICE, McGraw-Hill, New York, 1993.Google Scholar
[19] Huang, J.: Reflectarray Antenna, Wiley Online Library, Hoboken, New Jersey, 2008.Google Scholar
[20] Statz, H.; Newman, P.; Smith, I.W.; Pucel, R.A.; Haus, H.: GaAs FET device and circuit simulation in SPICE. IEEE Trans. Electron. Devices, 34 (1987), 160169.Google Scholar
[21] Maas, S.A.: Nonlinear Microwave and RF Circuits, Artech House, Norwood, MA, 2003.Google Scholar
[22] Golestaneh, H.; Abdipour, A.; Mohammadi, A.: Nonlinear modeling and analysis of a Doherty power amplifier driven by non-constant envelope signals. Analog Integr. Circuits Signal Process., 72 (2012), 141153.Google Scholar