Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T12:50:27.452Z Has data issue: false hasContentIssue false

Study of electromagnetic field stress impact on SiGe heterojunction bipolar transistor performance

Published online by Cambridge University Press:  07 January 2010

Ali Alaeddine*
Affiliation:
IRSEEM/ESIGELEC, Technopôle du Madrillet, Avenue Galillée, 76800 Saint Etienne du Rouvray, France. GPM/UMR 6634 CNRS, Avenue de l'Université, 76800 Saint Etienne du Rouvray, France.
Moncef Kadi
Affiliation:
IRSEEM/ESIGELEC, Technopôle du Madrillet, Avenue Galillée, 76800 Saint Etienne du Rouvray, France.
Kaouther Daoud
Affiliation:
GPM/UMR 6634 CNRS, Avenue de l'Université, 76800 Saint Etienne du Rouvray, France.
Hichame Maanane
Affiliation:
THALES AIR SYSTEMS, ZI du Mont Jarret, 76520 Ymare, France.
Philippe Eudeline
Affiliation:
THALES AIR SYSTEMS, ZI du Mont Jarret, 76520 Ymare, France.
*
Corresponding author: A. Alaeddine Email: [email protected]

Abstract

This paper deals with the various aspects of electromagnetic field impact modeling on the SiGe heterojunction bipolar transistor (HBT) device for microwave applications. This study differs from conventional HBT device reliability research associated with other stresses. The originality of this study comes from the generation of a localized electromagnetic field using the near-field bench. A coupling phenomenon between the electromagnetic field and the micro-strip lines connecting the transistor are evaluated by electromagnetic and electrical simulations. After stress, the input and the transmission scattering parameters are affected. This is primarily due to the deviation of the input impedance and the reduction of the transconductance, respectively. The stress effects have been related to a base current degradation. This degradation is due to a hot carrier introducing generation/recombination trap centers at the Si/SiO2 interface of the emitter–base spacer oxide, which leads to an excess recombination base current.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Frégonèse, S.; Avenier, G.; Maneux, C.; Chantre, A.; Zimmer, T.: A compact model for SiGe HBT on thin-film SOI. IEEE Trans. Electron Devices, 53 (2006), 296303.CrossRefGoogle Scholar
[2]Huang, S.-Y. et al. : Electrical stress effect on RF power characteristics of SiGe hetero-junction bipolar transistors. Microelectron. Reliab., 48 (2008), 193199.CrossRefGoogle Scholar
[3]Régis, M. et al. : Noise behaviour in SiGe devices. Solid-State Electron., 45 (2001), 18911897.CrossRefGoogle Scholar
[4]Chahine, I.; Kadi, M.; Gaboriaud, E.; Louis, A.; Mazari, B.: Characterization and modeling of the susceptibility of integrated circuits to conducted electromagnetic disturbances up to 1 GHz. IEEE Trans. EMC, 50 (2008), 285293.Google Scholar
[5]Cressler, J.D.: Silicon Heterostructure Handbook: Materials, Fabrication, Devices, Circuits and Applications of SiGe and Si Strained-Layer Epitaxy, CRC Press–Taylor and Francis Group, USA, 2006, chap 4.11, 525538.Google Scholar
[6]Zhang, S.; Niu, G.; Cressler, J.D.; Osten, H.-J.; Knoll, D.: The effects of proton irradiation on SiGe: C HBTs. IEEE Trans. Nucl. Sci., 48 (2001), 22332237.CrossRefGoogle Scholar
[7]Bouchelouk, L.; Riah, Z.; Baudry, D.; Kadi, M.; Louis, A.; Mazari, B.: Characterization of electromagnetic fields close to microwave devices using electric dipole probes. Int. J. RF Microw. Comput.-Aided Eng., 18 (2008), 146156.CrossRefGoogle Scholar
[8]Baudry, D. et al. : Applications of the near-field techniques in EMC investigations. IEEE Trans. EMC, 49 (2007), 485493.Google Scholar
[9]ADS Users Manual, Agilent, (2006).Google Scholar
[10]Antonini, G.; Ciccomancini Scogna, A.; Orlandi, A.: De-embedding procedure based on computed/measured data set for pcb structures characterization. IEEE Trans. Adv. Packag., 27 (2004), 597602.CrossRefGoogle Scholar
[11]Fiori, F.; Pozzolo, V.: Modified Gummel–Poon model for susceptibility prediction. IEEE Trans. Electromagn. Compat., 42 (2000), 206213.CrossRefGoogle Scholar
[12]HFSS v10.0 Users Manual, Ansoft, 2006.Google Scholar
[13]Alaeldine, A. et al. : A direct power injection model for immunity prediction in integrated circuits. IEEE Trans. EMC, 50 (2008), 5262.Google Scholar
[14]Huang, S.Y. et al. : Hot-carrier induced degradations on RF power characteristics of SiGe heterojunction bipolar transistors. IEEE Trans. Device Mater. Reliab., 5 (2005), 183189.CrossRefGoogle Scholar
[15]Jenkins, K.A. et al. : Use of electron-beam irradiation to study performance degradation of bipolar transistors after reverse-bias stress. IEEE Tech. Dig. Int., 8 (1991), 873876.Google Scholar
[16]Kuchenbecker, J. et al. : Evaluation of the hot carrier/ionizing radiation induced effects on the RF characteristics of low-complexity SiGe heterojunction bipolar transistors by numerical simulation. Microelectron. Reliab., 40 (2000), 15791584.CrossRefGoogle Scholar
[17]Rennane, A.; Bary, L.; Roux, J.L.; Kuchenbecker, J.; Graffeuil, J.; Plana, R.: Reliability properties of SiGe HBTs. Appl. Surf. Sci., 224 (2004), 341346.CrossRefGoogle Scholar
[18]Alaeddine, A.; Kadi, M.; Daoud, K.; Beydoun, B.; Blavette, D.: Characterization and simulation of SiGe HBTs degradation induced by electromagnetic field stress, in Proc. 16th IEEE, Int. Symp. on the Physical & Failure Analysis of Integrated Circuits, China, 2009.CrossRefGoogle Scholar