Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T13:21:16.184Z Has data issue: false hasContentIssue false

SIW antennas as hybrid energy harvesting and power management platforms for the internet of things

Published online by Cambridge University Press:  16 March 2016

Olivier Caytan*
Affiliation:
Electromagnetics Group, Department of Information Technology, Ghent University/iMinds, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium. Phone: +32 9 2643323
Sam Lemey
Affiliation:
Electromagnetics Group, Department of Information Technology, Ghent University/iMinds, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium. Phone: +32 9 2643323
Sam Agneessens
Affiliation:
Electromagnetics Group, Department of Information Technology, Ghent University/iMinds, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium. Phone: +32 9 2643323
Hendrik Rogier
Affiliation:
Electromagnetics Group, Department of Information Technology, Ghent University/iMinds, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium. Phone: +32 9 2643323
*
Corresponding author:O. Caytan Email: [email protected]

Abstract

A novel antenna-harvester co-design paradigm is presented for wireless nodes operating in an Internet of Things context. The strategy leads to compact and highly-integrated units, which are able to set up a reliable and energy-efficient wireless communication link, and to simultaneously harvest energy from up to three different sources, including thermal body energy, solar, and artificial light. The core of the unit consists of a substrate-integrated-waveguide (SIW) antenna. Its surface serves as a platform for the flexible energy-harvesting hardware, which also comprises the power management system. To demonstrate the approach, two different SIW cavity-backed slot antennas and a novel compact dual linearly polarized SIW antenna are presented. These topologies facilitate the integration of additional hardware without degrading performance. In the meantime, they enable comfortable integration into garments or unobtrusive embedding into floors or walls. Measurements on prototypes validate the integration procedure by verifying that the integrated hardware has a negligible influence on the performance of all discussed SIW antennas. Finally, measurements in four well-chosen indoor scenarios demonstrate that a hybrid energy-harvesting approach is necessary to obtain a more continuous flow and a higher amount of scavenged energy, leading to a higher system autonomy and/or reduced battery size.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Mattern, F.; Floerkemeier, C.: From active data management to event-based systems and more, Sachs, K., Petrov, I. and Guerrero, P. (eds.), From the Internet of Computers to the Internet of Things, Springer-Verlag, Berlin, Heidelberg, (2010), 242259.Google Scholar
[2] Dierck, A.; Agneessens, S.; Declercq, F.; Spinnewyn, B.; Stockman, G.-J.; Van Torre, P.; Vallozzi, L.; Vande Ginste, D.; Vaneteren, J.; Vervust, T.; Rogier, H.: Active textile antennas in professional garments for sensing, localisation and communication. Int. J. Microw. Wireless Technol., 6 (3–4) (2014), 331341.CrossRefGoogle Scholar
[3] Hanson, M.A.; Powell, H.C. Jr.; Barth, A.T.; Ringgenberg, K.; Calhoun, B.H.; Aylor, J.H.; Lach, J.: Body area sensor networks: challenges and opportunities. Computer, 42 (1) (2009), 5865.CrossRefGoogle Scholar
[4] Huang, L.; Pop, V.; de Francisco, R.; Vullers, R.; Dolmans, G.; de Groot, H.; Imamura, K.: Ultra low power wireless and energy harvesting technologies – an ideal combination, in Proc. IEEE Int. Conf. Communication Systems, Singapore, 17–19 November 2010, 295300.CrossRefGoogle Scholar
[5] Van Torre, P.; Vallozzi, L.; Dierck, A.; Rogier, H.; Moeneclaey, M.: Power-efficient body-centric communications, in URSI Benelux Forum, 14 September 2012, 810.Google Scholar
[6] Collado, A., Georgiadis, A.: Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna. IEEE Trans. Circuits Syst. I, Regul. Papers, 60 (8) (2013), 22252234.CrossRefGoogle Scholar
[7] Lemey, S.; Declercq, F.; Rogier, H.: Dual-band substrate integrated waveguide textile antenna with integrated solar harvester. IEEE Antennas Wireless Propag. Lett., 13 (1) (2014), 269272.CrossRefGoogle Scholar
[8] Lossec, M.; Multon, B.; Ahmed, H.; Goupil, C.: Thermoelectric generator placed on the human body: system modeling and energy conversion improvements. Eur. Phys. J, 52 (1) (2010), 110.Google Scholar
[9] Virili, M.; Georgiadis, A.; Niotaki, K.; Collado, A.; Alimenti, F.; Mezzanotte, P.; Roselli, L.; Carvalho, N.B.: Design and optimization of an antenna with thermo-electric generator (TEG) for autonomous wireless nodes, in 2014 IEEE RFID Technology and Applications Conf. (RFID-TA), 8–9 September 2014, 2125.CrossRefGoogle Scholar
[10] Lemey, S.; Declercq, F.; Rogier, H.: Textile antennas as hybrid energy-harvesting platforms. Proc. IEEE, 102 (11) (2014), 18331857.CrossRefGoogle Scholar
[11] Bozzi, M.; Georgiadis, A.; Wu, K.: Review of substrate-integrated waveguide circuits and antennas. IET Microw. Antennas Propag., 5 (8) (2011), 909920.CrossRefGoogle Scholar
[12] Luo, G.Q.; Wang, T.Y.; Zhang, X.H.: Review of low profile substrate integrated waveguide cavity backed antennas. Int. J. Antennas Propag., 2013 (2013), 746920 (7 pages). [Online]. Available: http://dx.doi.org/10.1155/2013/746920 CrossRefGoogle Scholar
[13] Moro, R.; Agneessens, S.; Rogier, H.; Bozzi, M.: Wearable textile antenna in substrate integrated waveguide technology. IET Electron. Lett., 48 (16) (2012), 985987.CrossRefGoogle Scholar
[14] Moro, R.; Agneessens, S.; Rogier, H.; Dierck, A.; Bozzi, M.: Textile microwave components in substrate integrated waveguide technology. IEEE Trans. Microw. Theory Techn., 63 (2) (2015), 422432.CrossRefGoogle Scholar
[15] Caytan, O.; Lemey, S.; Agneessens, S.; Vande Ginste, D.; Demeester, P.; Loss, C.; Salvado, R.; Rogier, H.: Half-mode substrate-integrated-waveguide cavity-backed slot antenna on cork substrate. IEEE Antennas Wireless Propag. Lett., 15 (1) (2016), 162165.CrossRefGoogle Scholar
[16] Jeon, Y.; Sood, R.; Jeong, J.h.; Kim, S.-G.: MEMS power generator with transverse mode thin film PZT. Sens. Actuators A, Phys., 122 (1) (2005), 1622.CrossRefGoogle Scholar
[17] Agneessens, S.; Lemey, S.; Moro, R.; Bozzi, M.; Rogier, H.: The next generation textile antennas based on substrate integrated waveguide technology, in Proc. of the XXXIth General Assembly and Scientific Symp. Int. Union of Radio Science, Beijing, China, 2014, 14.CrossRefGoogle Scholar
[18] Jin, C.; Li, R.; Alphones, A.; Bao, X.: Quarter-mode substrate integrated waveguide and its application to antennas design. IEEE Trans. Antennas Propag., 61 (6) (2013), 29212928.CrossRefGoogle Scholar
[19] Caytan, O.; Agneessens, S.; Lemey, S.; Vande Ginste, D.; Demeester, P.; Rogier, H.: Ultra-wideband cork substrate-integrated-waveguide cavity-backed slot antenna, in 2015 Int. Conf. Electromagnetics in Advanced Applications (ICEAA), September 2015, 11041107.CrossRefGoogle Scholar
[20] Vallozzi, L.; Van Torre, P.; Hertleer, C.; Rogier, H.; Moeneclaey, M.; Verhaevert, J.: Wireless communication for firefighters using dual-polarized textile antennas integrated in their garment. IEEE Trans. Antennas Propag., 58 (4) (2010), 13571368.CrossRefGoogle Scholar
[21] Van Torre, P.; Vallozzi, L.; Hertleer, C.; Rogier, H.; Moeneclaey, M.; Verhaevert, J.: Indoor off-body wireless MIMO communication with dual polarized textile antennas. IEEE Trans. Antennas Propag., 59 (2) (2011), 631642.CrossRefGoogle Scholar
[22] Luo, G.Q.; Hu, Z.F.; Li, W.J.; Zhang, X.H.; Sun, L.L.; Zheng, J.F.: Bandwidth-enhanced low-profile cavity-backed slot antenna by using hybrid SIW cavity modes. IEEE Trans. Antennas Propag., 60 (4) (2012), 16981704.CrossRefGoogle Scholar
[23] Dardari, D.; D'Errico, R.; Roblin, C.; Sibille, A.; Win, M.: Ultrawide bandwidth RFID: the next generation? Proc. IEEE, 98 (9) (2010), 15701582.CrossRefGoogle Scholar