Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T13:28:00.746Z Has data issue: false hasContentIssue false

SiGe heterojunction bipolar phototransistor for optics–microwaves interfacing

Published online by Cambridge University Press:  27 October 2011

Pierre Lecoy
Affiliation:
ETIS (Equipe Traitement de l'information et des systèmes), ENSEA, Université de Cergy Pontoise, CNRS UMR8051, 6 avenue du Ponceau, F-95014 Cergy Pontoise Cedex, France.
Bruno Delacressonniere*
Affiliation:
ENSEA, 6 avenue du Ponceau, F-95014 Cergy Pontoise Cedex, France. LaMIPS (Laboratoire de Microélectronique et de Physique des Semiconducteurs), CRISMAT-NXP Semiconductors-PRESTO engineering, CNRS UMR 6508, 6 boulevard Maréchal Juin, F-14000Caen, France. Phone: + 33130736275.
Daniel Pasquet
Affiliation:
LaMIPS (Laboratoire de Microélectronique et de Physique des Semiconducteurs), CRISMAT-NXP Semiconductors-PRESTO engineering, CNRS UMR 6508, 6 boulevard Maréchal Juin, F-14000Caen, France. Phone: + 33130736275.
*
Corresponding author: B. Delacressonniere Email: [email protected]

Abstract

A new SiGe heterojunction bipolar phototransistor (HPT) based on a commercially available process was designed, realized, and experimentally characterized. Its internal characteristics, mainly the collector-to-base capacitance, vary significantly with the received light power, making it suitable as an active element of a light-controlled photo-oscillator. It can also be a key component of optical network-on-chip (ONoC). Its responsivity was improved and its transition frequency remains in the range of 30 GHz.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Pei, Z.W. et al. : A high performance SiGe–Si multiple quantum-well heterojunction phototransistor. IEEE Electron Device Lett., 24 (10) (2003), 643645.Google Scholar
[2]Pei, Z. et al. : Bandwidth enhancement in an integratable SiGe phototransistor by removal of excess carriers. IEEE Electron Device Lett., 25 (5) (2004), 286288.Google Scholar
[3]Lai, K.S.; Huang, J.C.; Hsu, K.Y.J.: High-responsivity photodetector in standard SiGe BiCMOS technology. IEEE Electron Device Lett., 28 (9) (2007), 800802.Google Scholar
[4]Egels, M.; Delacressonnière, B.; Sahabun, Y.; Lecoy, P.: Design of an optically frequency or phase-controlled oscillator for hybrid fiber-radio LAN at 5.2 GHz. Microw. Opt. Technol. Lett., 45 (2) (2005), 104107.CrossRefGoogle Scholar
[5]Polleux, J.-L.; Paszkiewicz, L.; Billabert, A.-L.; Salset, J.; Rumelhard, C.: Optimization of InP-InGaAs HPT gain: design of an opto-microwave monolithic amplifier. IEEE Trans. Microw. Theory Tech., 52 (3) (2004), 871881.Google Scholar
[6]Lecoy, P.; Delacressonnière, B.: Design and realization of an optically controlled oscillator for radio over fiber at 5.2 GHz, in Int. Topical Meeting on Microwave Photonics, MWP'2006, Grenoble, France, 2006. doi: 10.1109/MWP.2006.346561.Google Scholar
[7]Schiellein, J. et al. : Experimental influence of the base load effect on SiGe/Si and InGaAs/InP HPTs, in Int. Topical Meeting on Microwave Photonics, MWP'2009, Valencia, Spain, 2009.Google Scholar
[8]Jenmisson, W.D. et al. : Hybrid fiberoptic-millimeter-wave Links. IEEE Microw. Mag., 1 (2) (2000), 4451.CrossRefGoogle Scholar
[9]Polleux, J.L.; Rumelhard, C.: Optical absorption coefficient determination and physical modelling of strained SiGe/Si photodetectors, In Eighth IEEE Int. Symp. High Performance Electron Devices for Microwave and Optoelectronic Applications, 13–14 November 2000, 167172.Google Scholar
[10]Polleux, J.L. et al. : A large-signal millimeter-wave InP/GaInAs phototransistor model: method of parameters extraction and maximum gain investigation, in 29th Eur. Microwave Conf., 1999, vol. 1, 4851.Google Scholar
[11]Moutier, F.; Polleux, J.L.; Rumelhard, C.; Schumacher, H.: Frequency response enhancement of a single strained layer SiGe phototransistor based on physical simulations, in European Gallium Arsenide and Other Semiconductor Application Symp., EGAAS, 2005, 113116.Google Scholar
[12]Basaran, U.; Wieser, N.; Feiler, G.; Berroth, M.: Small-signal and high-frequency noise modeling of SiGe HBTs. IEEE Trans. Microw. Theory Tech., 53 (3) (2005), 919928.Google Scholar
[13]Li, B.; Prasad, S.: Basic expressions and approximations in small-signal parameter extraction for HBT's. IEEE Trans. Microw. Theory Tech., 47 (5) (1999), 534539.CrossRefGoogle Scholar
[14]Li, B.; Prasad, S.; Yang, L.-W.; Wang, S.C.: A semianalytical parameter-extraction procedure for HBT equivalent circuit. IEEE Trans. Microw. Theory Tech., 46 (10) (1998), 14271435.Google Scholar
[15]Rudolph, M.; Doerner, R.; Heymann, P.: Direct extraction of HBT equivalent-circuit elements. IEEE Trans. Microw. Theory Tech., 47 (1) (1999), 8284.Google Scholar
[16]Giacoletto, L.J.: Junction transistor equivalent circuits and vacuum-tube analogy. Proc. IRE, 40 (11) (1952), 14901493.Google Scholar