Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T17:12:05.306Z Has data issue: false hasContentIssue false

Reliability study of a tunable Ka-band SIW-phase shifter based on liquid crystal in LTCC-technology

Published online by Cambridge University Press:  14 July 2014

Sebastian Strunck*
Affiliation:
Institute of Microwave Engineering and Photonics, Technical University Darmstadt, 64283 Darmstadt, Germany. Phone: +49 6151 16 4367
Alexander Gaebler
Affiliation:
Institute of Microwave Engineering and Photonics, Technical University Darmstadt, 64283 Darmstadt, Germany. Phone: +49 6151 16 4367
Onur H. Karabey
Affiliation:
Institute of Microwave Engineering and Photonics, Technical University Darmstadt, 64283 Darmstadt, Germany. Phone: +49 6151 16 4367
Andreas Heunisch
Affiliation:
Division V.4 Advanced Ceramics, Federal Institute for Materials Research and Testing, 12200 Berlin, Germany
Baerbel Schulz
Affiliation:
Division V.4 Advanced Ceramics, Federal Institute for Materials Research and Testing, 12200 Berlin, Germany
Torsten Rabe
Affiliation:
Division V.4 Advanced Ceramics, Federal Institute for Materials Research and Testing, 12200 Berlin, Germany
Ruediger Follmann
Affiliation:
IMST GmbH, 47475 Kamp-Lintfort, Germany
Juergen Kassner
Affiliation:
IMST GmbH, 47475 Kamp-Lintfort, Germany
Dietmar Koether
Affiliation:
IMST GmbH, 47475 Kamp-Lintfort, Germany
Atsutaka Manabe
Affiliation:
Liquid Crystal Division, Merck KGaA, 64293 Darmstadt, Germany
Rolf Jakoby
Affiliation:
Institute of Microwave Engineering and Photonics, Technical University Darmstadt, 64283 Darmstadt, Germany. Phone: +49 6151 16 4367
*
Corresponding author: S. Strunck Email: [email protected]

Abstract

A tunable substrate-integrated waveguide phase shifter using low-temperature co-fired ceramic (LTCC)-technology is presented in this paper. By changing the effective permittivity in the liquid crystal (LC)-filled waveguide, the differential phase can be tuned continuously. This is achieved by means of an analog signal applied to the electrodes, surrounding the LC. The design allows for precise tuning of the differential phase, which is proven with a Monte Carlo measurement resulting in phase errors of less than 3° at 28 GHz. Besides that, the ambient temperature dependency of the module is shown. The phase shifter has a high integration level and can be included into a complete and lightweight single-phased array antenna module. The phase shifter is realized with a high level of integration which is available through the multilayer process of the LTCC. It has a length of 50 and provides a differential phase shift of more than 360° at 28 GHz. The figure of merit for tunable phase shifters is >40°/dB.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Yamane, D.; Yamamoto, T.; Urayama, K.; Yamashita, K.; Toshiyoshi, H.; Kawasaki, S.: A phase shifter by LTCC substrate with an RF-MEMS switch, in 38th European Microwave Conf., 2008, 611–613.CrossRefGoogle Scholar
[2]Xiaoyu, M.; Toyoda, O.; Ueda, S.: MEMS tunable bandpass filters on high-k LTCC, in IEEE 23rd Int. Conf. Micro Electro Mechanical Systems (MEMS), 2010, 787–790.Google Scholar
[3]Lee, C.H. et al. : A compact LTCC-based Ku-band transmitter module. IEEE Trans. Adv. Packag., 25 (2002), 374384.Google Scholar
[4]Kozyrev, A.; Osadchy, V.; Pavlov, A.; Sengupta, L.: Application of ferroelectrics in phase shifter design, in 2000 IEEE MTT-S Int. Microwave Symp. Digest, 2000, 1355–1358.Google Scholar
[5]Nikfalazar, M. et al. : Inkjet printed BST thick-films for x-band phase shifter and phased array applications, in 2013 Int. Workshop on Antenna Technology (iWAT), 2013, 121–124.Google Scholar
[6]Dolfi, D.; Labeyrie, M.; Joffre, P.; Huignard, J.P.: Liquid crystal microwave phase shifter. Electron. Lett., 29 (1993), 926928.Google Scholar
[7]Weil, C.; Muller, S.; Scheele, P.; Best, P.; Lussem, G.; Jakoby, R.: Highly-anisotropic liquid-crystal mixtures for tunable microwave devices. Electron. Lett., 39 (2003), 17321734.Google Scholar
[8]Goelden, F.; Gaebler, A.; Mueller, S.; Lapanik, A.; Haase, W.; Jakoby, R.: Liquid-crystal varactors with fast switching times for microwave applications. Electron. Lett., 44 (2008), 480481.Google Scholar
[9]Strunck, S.; Karabey, O.H.; Gaebler, A.; Jakoby, R.: Reconfigurable waveguide polariser based on liquid crystal for continuous tuning of linear polarisation. Electron. Lett., 48 (2012), 441443.Google Scholar
[10]Wolff, I.: From antennas to microwave systems – LTCC as an integration technology for space applications, in 3rd European Conf. Antennas and Propagation (EuCAP), 2009, 3–8.Google Scholar
[11]Gaebler, A. et al. : Liquid crystal-reconfigurable antenna concepts for space applications at microwave and millimeter waves. Int. J. Antennas Propag., vol. 2009 (2009), doi: 10.1155/2009/876989.Google Scholar
[12]Sanadgol, B.; Holzwarth, S.; Kassner, J.: 30 GHz liquid crystal phased array, in Loughborough Antennas and Propagation Conf. (LAPC), 2009, 589–592.Google Scholar
[13]Strunck, S.; Karabey, O.H.; Weickhmann, C.; Gaebler, A.; Jakoby, R.: Continuously tunable phase shifters for phased arrays based on liquid crystal technology, in 2013 IEEE Int. Symp. Phased Array Systems and Technology, 2013.Google Scholar
[14]de Gennes, P.G.; Prost, J.: The Physics of Liquid Crystals, Oxford Science Publications, Oxford, 1993.Google Scholar
[15]Yang, D.K.; Wu, S.T.: Fundamentals of Liquid Crystal Devices, John Wiley & Sons, Ltd., West Sussex, England, 2006.Google Scholar
[16]Karabey, O.H.; Gaebler, A.; Strunck, S.; Jakoby, R.: A 2-D electronically steered phased-array antenna with 2 2 elements in LC display technology. IEEE Trans. Microw. Theory Tech., 60 (2012), 12971306.Google Scholar
[17]Li, H.; Hong, W.; Cui, T.J.; Wu, K.; Zhang, Y.L.; Yan, L.: Propagation characteristics of substrate integrated waveguide based on LTCC, in 2003 IEEE MTT-S Int. Microwave Symp. Digest, 2003, 2045–2048.Google Scholar
[18]Yau, C.; Huang, T.; Shen, T.; Chien, H.; Wu, R.: Design of 30 GHz transition between microstrip line and substrate integrated waveguide, in Asia-Pacific Microwave Conf., 2007 (APMC 2007), 2007, 1–4.Google Scholar
[19]Gaebler, A.; Goelden, F.; Karabey, O.H.; Jakoby, R.: A FDFD based eigen-dielectric formulation of the Maxwell equations for material characterization in arbitrary waveguide structures, in Proc. Int. Microwave Symp., 2010.Google Scholar
[20]Strunck, S. et al. : Liquid crystal filled LTCC phase shifter, in ESA Microwave Technologies and Techniques Workshop, 2012.Google Scholar
[21]Birol, H.; Maeder, T.; Jacq, C.; Ryser, P.: Investigation of interactions between co-fired LTCC components. J. Eur. Ceram. Soc., 25 (2005), 20652069.Google Scholar
[22]Koul, S.K.; Bhat, B.: Microwave and Millimeter Wave Phase Shifters: Dielectric and Ferrite Phase Shifters 001, Artech House, Boston, MA, USA, 1991.Google Scholar
[23]Bulja, S.; Mirshekar-Syahkal, D.: Meander line millimetre-wave liquid crystal based phase shifter. Electron. Lett., 46 (2010), 769771.Google Scholar
[24]Weickhmann, C.; Nathrath, N.; Gehring, R.; Gaebler, A.; Jost, M.; Jakoby, R.: Recent measurements of compact electronically tunable liquid crystal phase shifter in rectangular waveguide topology. Electron. Lett., 49 (2013), 13451347.Google Scholar
[25]Franc, A.-L.; Karabey, O.H.; Rehder, G.; Pistono, E.; Jakoby, R.; Ferrari, P.: Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology. IEEE Trans. Microw. Theory Tech., 61 (2013), 39053915.Google Scholar
[26]Deo, P.; Mirshekar-Syahkal, D.; Seddon, L.; Day, S.E.; Fernandez, F.A.: Liquid crystal based patch antenna array for 60 GHz applications, in 2013 IEEE Radio and Wireless Symp. (RWS), 2013, 127–129.Google Scholar
[27]Fritzsch, C.; Strunck, S.; Bildik, S.; Jakoby, R.: Investigation of beam scanning speed for liquid crystal based tunable antennas, in 33rd ESA Antenna Workshop on Challenges for Space Antenna Systems, 2011.Google Scholar