Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T14:29:24.913Z Has data issue: false hasContentIssue false

Radome-covered substrate-integrated cavity-backed patch antenna surrounded by dielectric material

Published online by Cambridge University Press:  25 February 2015

Muhammad Javid Asad*
Affiliation:
COMSATS Institute of Information Technology, Islamabad, Pakistan
Muhammad Farhan Shafique
Affiliation:
COMSATS Institute of Information Technology, Islamabad, Pakistan
*
Corresponding author:M. Javid Asad Email: [email protected]

Abstract

The substrate-integrated cavity-backed patch antenna embedded in dielectric-coated structure is presented. The aperture of antenna is covered with composite radome. The close proximity of radome to antenna severely degrades input impedance matching. The dielectric coating, a thick dielectric material, significantly deteriorates radiation pattern of antenna due to propagation of surface waves in the surrounding dielectric coating. The proposed planar electromagnetic bandgap structure reduces the propagation of surface waves in the dielectric coating recovering deterioration in the radiation pattern of the antenna. The problem of input impedance mismatching of antenna is resolved by placing a metallic strip on the top of the radome. The simulated results are in good agreement with measured results.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Karmakar, N.C.: Investigations into a cavity backed circular patch antenna. IEEE Trans. Antennas Propag., 50 (2002), 17061715.CrossRefGoogle Scholar
[2]Awida, M.H.; Elkhouly, E. and Fathy, A.E.: Low cost high efficiency substrate integrated cavity-backed single element antenna, in APS Conf., Toronto, 2010.Google Scholar
[3]Awida, M.H.; Elkhouly, E. and Fathy, A.E.: Low cost high efficiency substrate integrated cavity-backed single element antenna. IET Microw., Antennas Propag., 6 (2012), 151157.Google Scholar
[4]Bozzi, M.; Perregrini, L.; Wu, K. and Arcioni, P.: Current and future research trends in substrate integrated waveguide technology. Radioengineering, 18 (2009), 201209.Google Scholar
[5]Luo, G.Q.; Hu, Z.F.; Dong, L.X. and Sun, L.L.: Planar slot antenna backed by substrate integrated waveguide cavity. IEEE Antennas Wireless Propag. Lett., 7 (2008), 236239.Google Scholar
[6]Yan, L.; Hong, W.; Hua, G.; Chen, J.X.; Wu, K. and Cui, T.J.: Simulation and experiment on SIW slot array antennas. IEEE Microw. Wireless Compon. Lett., 14 (2004), 446448.Google Scholar
[7]Awida, M.H. and Fathy, A.E.: Substrate-integrated waveguide Ku-band cavity-backed 2 × 2 microstrip patch array antenna. IEEE Antennas Wireless Propag. let., 8 (2009), 10541056.Google Scholar
[8]Awida, M.H.; Suleiman, S.H. and Fathy, A.E.: Substrate integrated cavity backed patch arrays: a low cost approach for bandwidth enhancement. IEEE Trans. Antennas Propag., 59 (2011), 11551163.Google Scholar
[9]Bohorquez, J.C.; Pedraza, H.A.F.; Pinzon, I.C.H.; Castiblanco, J.A.; Pena, N. and Guarnizo, H.F.: Planar substrate integrated waveguide cavity-backed antenna. IEEE Antennas Wireless Propag. Lett., 8 (2009), 11391142.Google Scholar
[10]Luo, G.Q.; Hu, Z.F.; Li, W.J.; Zhang, X.H.; Sun, L.L. and Zheng, J.F.: Bandwidth-enhanced low-profile cavity-backed slot antenna by using hybrid SIW cavity modes. IEEE Trans. Antennas Propag., 60 (2012), 16981704.Google Scholar
[11]Giuppi, F.; Georgiadis, A.; Collado, A.; Bozzi, M. and Perregrini, L.: Tunable SIWcavity backed active antenna oscillator. Electron. Lett., 46 (2010), 10531055.CrossRefGoogle Scholar
[12]Saghati, A.P. and Entesari, K.: A reconfigurable SIW cavity backed slot antenna with one octave tuning range. IEEE Trans. Antennas Propag., 61 (2013), 39373945.Google Scholar
[13]Weily, A.R.; Horvath, L.; Esselle, K.P.; Sanders, B.C. and Bird, T.S.: A planar resonator antenna based on a woodpile EBG material. IEEE Trans. Antennas Propag., 53 (2005), 216223.Google Scholar
[14]Sievenpiper, D.; Zhang, L.; Broas, R.F.J.; Alexópoulos, N.G. and Yablonovitch, E.: High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech., 47 (1999), 20592074.Google Scholar
[15]Yang, F. and Rahmat-Samii, Y.: Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE Trans. Antennas Propag., 51 (2003), 26912703.Google Scholar
[16]Coccioli, R.; Yang, F.R.; Ma, K.P. and Itoh, T.: Aperture-coupled patch antenna on UC-PBG substrate. IEEE Trans. Microw. Theory Tech., 47 (1999), 21232130.CrossRefGoogle Scholar
[17]Gonzalo, R.; de Maagt, P. and Sorrolla, M.: Enhanced patch antenna performance by suppressing surface waves using photonic-bandgap substrates. IEEE Trans. Microw. Theory Tech., 47 (1999), 21312138.Google Scholar
[18]Yang, F. and Rahmat-Samii, Y.: Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. IEEE Trans. Antennas Propag., 51 (2003), 29362946.Google Scholar
[19]Yang, H.Y. and Alexopoulos, N.G.: Gain enhancement methods for printed circuit antennas through multiple superstrates. IEEE Trans. Antennas Propag., 35 (1987), 860863.Google Scholar
[20]Cheype, C.; Serier, C.; Thèvenot, M.; Monédière, T.; Reineix, A. and Jecko, B.: An electromagnetic bandgap resonator antenna. IEEE Trans. Antennas Propag., 50 (2002), 12851290.Google Scholar
[21]Weily, A.R.; Esselle, K.P.; Sanders, B.C. and Bird, T.S.: Antennas based on 2-D and 3-D electromagnetic bandgap materials, in IEEE Antenna and Propagation-Society Int. Symp. Digest., 2003, 847–850.Google Scholar
[22]Bulu, I.; Caglayan, H. and Ozbay, E.: Highly directive radiation from sources embedded inside photonic crystals. Appl. Phys. Lett., 83 (2003), 32633265.Google Scholar
[23]Enoch, S.; Tayeb, G.; Sabouroux, P.; Gu, N. and Vincent, P.: A metamaterial for directive emission. Phys. Rev. Lett., 89 (2002), 202213.Google Scholar
[24]Yang, F. and Rahmat-Samii, Y.: Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, New York, 2009.Google Scholar
[25]Frezza, F.; Pajewski, L.; Piuzzi, E.; Ponti, C. and Schettini, G.: Advances in EBG resonator antenna research, in Proc. of Int. Symp. on Antennas and Propagation, Japan, 2012.Google Scholar
[26]Menudier, C.; Thevenot, M.; Monediere, T. and Jecko, B.F.: EBG resonator antennas: state of the art and prospects, in Int. Conf. on Antenna Theory and Techniques, Ukraine, 2007.Google Scholar
[27]Hosseini, M. and Hakkak, M.: Characteristics estimation for Jerusalem cross-based artificial magnetic conductors. IEEE Antennas Wireless Propag. Lett., 7 (2008), 5861.Google Scholar
[28]Aktar, M.N.; Shahin Uddin, M.; Morshed, M.; Amin, M.R. and Ali, M.M.: Parametric performance analysis of patch antenna using EBG substrate. Int. J. Wireless Mobile Netw., 4 (2012), 7988.Google Scholar
[29]Bendaoudi, A. and Naoum, R.: Circular patch antenna performance using EBG structure. ACEEE Int. J. Commun., 4 (2013), 3438.Google Scholar
[30]Balanis, C.A.: Antenna Theory, Analysis and Design, 3rd ed., Wiley, New Jersey USA, 2005.Google Scholar
[31]Wu, K.; Deslandes, D. and Cassivi, Y.: The substrate integrated circuits – a new concept for high frequency electronics and optoelectronics, in Int. Conf. on Telecommunications in Modern Satellite, Cable and Broadcasting Service, Telsiks, 2003.Google Scholar
[32]Venkateswaran, A.: Analysis of Planar EBG Structures Using Transmission Lines Model. MSc Thesis, McGill University, Canada, 2009.Google Scholar
[33]Sievenpiper, D. and Zhang, L.: High-Impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech., 47 (1999), 20592079.Google Scholar
[34]Li, L.; Chen, Q. and Yuan, Q.: Surface wave suppression band gap and plane wave refection phase band of mushroom like photonic band gap structure. J. Appl. Phys., 103 (2008), 023513–023513-10Google Scholar
[35]Sujatha, M.N. and Vinoy, K.J.: A stacked ring-patch artificial substrate to improve the antenna performance. J. Prog. Electromagn. Res., 15 (2010), 7587.Google Scholar