Published online by Cambridge University Press: 07 April 2020
Early detection of breast cancer is required to increase the chances of a successful treatment. However, current breast-imaging systems such as X-Ray mammography, breast ultrasound, and magnetic resonance imaging have technological limitations so that novel solutions are needed to address this major societal problem. The current paper considers ultra-wideband (UWB) microwave radiation in the frequency band from 1 to 9 GHz. Given by the non-ionizing nature of microwaves frequent check-ups are more feasible. In this work, we propose algorithms for qualitative and quantitative microwave breast imaging for a transmission-based UWB system. Based on numerical and experimental data, the performance of the algorithms has been investigated and compared. Finally, microwave images obtained during an initial patient study are discussed relative to corresponding X-ray images.