Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T07:25:56.920Z Has data issue: false hasContentIssue false

Nonideality sources and implementation considerations in polar transmitters

Published online by Cambridge University Press:  19 March 2009

José A. García*
Affiliation:
University of Cantabria, Santander, Spain. (Email: [email protected])
José C. Pedro
Affiliation:
Institute of Telecommunications, University of Aveiro, Aveiro, Portugal. (Email: [email protected] and [email protected])
Pedro Miguel Cabral
Affiliation:
Institute of Telecommunications, University of Aveiro, Aveiro, Portugal. (Email: [email protected] and [email protected])
Christian Fager
Affiliation:
Chalmers University of Technology, Gothenburg, Sweden. (Email: [email protected] and [email protected])
Hossein Mashad Nemati
Affiliation:
Chalmers University of Technology, Gothenburg, Sweden. (Email: [email protected] and [email protected])
Anding Zhu
Affiliation:
University College Dublin, Dublin, Ireland. (Email: [email protected])
Paolo Colantonio
Affiliation:
University of Roma Tor Vergata, Rome, Italy. (Email: [email protected])
*
Corresponding author: José A. García Email: [email protected]

Abstract

In this paper, the main nonidealities appearing in polar transmitters will be addressed, together with several implementation considerations. Special attention will be paid to the role of AM modulation nonlinearity and parasitic AM-to-PM conversion, once architecture mechanisms such as time-delay mismatch between branches or limited bandwidth in the amplitude path are controlled. The device limiting factors for a highly efficient switched mode operation and a linear amplitude modulation will be identified. Some circuit design and implementation guidelines for the RF modulating stage and the envelope amplifier will be discussed, to finish with system-level analysis considerations under two-tone and real communication signal excitations.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Kahn, L.R.: Single-sideband transmission by envelope elimination and restoration. Proc. IRE, 40 (7) (1952), 803806.CrossRefGoogle Scholar
[2]Raab, F.H.: Intermodulation distortion in Kahn-technique transmitters. IEEE Trans. Microwave Theory Tech., MTT-44 (12, part 1) (1996), 22732278.CrossRefGoogle Scholar
[3]Milosevic, D.; van der Tang, J.; van Roermund, A.: Intermodulation products in the EER technique applied to class-E amplifiers. Int. Symp. Circuits Syst. Dig., I, Vancouver, May 2004, 637640.Google Scholar
[4]Wang, N.; Peng, X.; Yousefzadeh, V.; Maksimović, D.; Pajić, S.; Popović, Z.: Linearity of X-Band class-E power amplifiers in EER operation. IEEE Trans. Microwave Theory Tech., MTT-53 (3) (2005), 10961102.CrossRefGoogle Scholar
[5]Sokal, N.O.: Class-E switching-mode high-efficiency tuned RF/microwave power amplifier: improved design equations, in 2000 IEEE MTT-S Int. Microwave Symp. Digest, Boston, June 2000, 779782.Google Scholar
[6]Mader, T.B.; Bryerton, E.W.; Markovic, M.; Forman, M.; Popovic, Z.: Switched-mode high-efficiency microwave power amplifiers in a free-space power-combiner array. IEEE Trans. Microwave Theory Tech., MTT-46 (10, part 1) (1998), 13911398.CrossRefGoogle Scholar
[7]Schmelzer, D.; Long, S.I.: A GaN HEMT Class F Amplifier at 2 GHz with >80% PAE, in Proc. 2006 IEEE Compound Semiconductor IC Symp., 9699.80%+PAE,+in+Proc.+2006+IEEE+Compound+Semiconductor+IC+Symp.,+96–99.>Google Scholar
[8]Pribble, W.; Milligan, J.M.; Pengelly, R.S.: High efficiency class-E amplifier utilizing GaN HEMT technology, Topical Workshop on Power Amplifiers for Wireless Communications, 2006 IEEE Radio and Wireless Symp., January 2006.Google Scholar
[9]Pedro, J.C.; García, J.A.; Cabral, P.M.: Nonlinear distortion analysis of polar transmitters, in 2007 IEEE MTT-S Int. Microwave Symp., Honolulu, June 2007, 957960.CrossRefGoogle Scholar
[10]Pedro, J.C.; García, J.A.; Cabral, P.M.: Nonlinear distortion analysis of polar transmitters. IEEE Trans. Microwave Theory Tech., MTT-55 (12, part 2) (2007), 27572765.CrossRefGoogle Scholar
[11]Kimball, D.F., et al. : High-efficiency envelope-tracking W-CDMA base-station amplifier using GaN HFETs. IEEE Trans. Microwave Theory Tech., 54 (11), (2006) 38483856.CrossRefGoogle Scholar
[12]Nam-Sung, J.; Nam-In, K.; Gyu-Hyeong, C.: A new high-efficiency and super-fidelity analog audio amplifier with the aid of digital switching amplifier: class K amplifier, in Proc. IEEE Power Electronics Specialists Conf., 1 (1998), 457463.Google Scholar
[13]Jau-Horng, C.; Fedorenko, P.; Kenney, J.S.: A low voltage W-CDMA polar transmitter with digital envelope path gain compensation. IEEE Microwave Wireless Compon. Lett., 16 (7) (2006), 428430.CrossRefGoogle Scholar
[14]Cabral, P.M.; Pedro, J.C.; García, J.A.; Cabria, L.: A linearized polar transmitter for wireless applications, in 2008 IEEE MTT-S Int. Microwave Symp., Atlanta, June 2008.CrossRefGoogle Scholar
[15]Nemati, H.M.; Fager, C.; Gustavsson, U.; Jos, R.; Zirath, H.: Characterization of Switched Mode LDMOS and GaN Power Amplifiers for Optimal Use in Polar Transmitter Architectures, 2008 IEEE MTT-S Int. Microwave Symp., Honolulu, June 2008, 15051508.CrossRefGoogle Scholar
[16]Draxler, P.J.; Zhu, A.; Yan, J.J.; Kolinko, P.; Kimball, D.F.; Asbeck, P.M.: Quantifying distortion of RF power amplifiers for estimation of predistorter performance, in 2008 IEEE MTT-S Int. Microwave Symp., Honolulu, June 2008, 931934.CrossRefGoogle Scholar