Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T03:49:17.987Z Has data issue: false hasContentIssue false

Multi-Octave bandwidth, 100 W GaN power amplifier using planar transmission line transformer

Published online by Cambridge University Press:  08 March 2017

Mhd Tareq Arnous*
Affiliation:
Microwave Engineering Laboratory, Berlin Institute of Technology, 10587, Berlin, Germany EPCOS AG, A TDK Group Company, 81671, Munich, Germany
Zihui Zhang
Affiliation:
Microwave Engineering Laboratory, Berlin Institute of Technology, 10587, Berlin, Germany
Felix Rautschke
Affiliation:
Microwave Engineering Laboratory, Berlin Institute of Technology, 10587, Berlin, Germany
Georg Boeck
Affiliation:
Microwave Engineering Laboratory, Berlin Institute of Technology, 10587, Berlin, Germany Ferdinand-Braun-Institut, Leibniz-Institut fuer Hochfrequenztechnik, 12489, Berlin, Germany
*
Corresponding author: MHD T. Arnous Email: [email protected]

Abstract

In this paper, design, implementation, and experimental results of efficient, high-power, and multi-octave gallium nitride-high electron mobility transistor power amplifier are presented. To overcome the low optima source/load impedances of a large transistor, various topologies of a broadside-coupled impedance transformer are simulated, implemented, and measured. The used transformer has a flat measured insertion loss of 0.5 dB and a return loss higher than 10 dB over a decade bandwidth (0.4–4 GHz). The transformer is integrated at the drain and gate sides of the transistor using pre-matching networks to transform the complex optima source/load impedances to the appropriate impedances of the transformer plane. The measurement results illustrate a saturated output power ranged between 80 and 115 W with an average drain efficiency of 57% and gain of 10.5 dB across 0.6–2.6 GHz.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Colantonio, P.; Giannini, F.; Giofre, R.; Piazzon, L.: High-efficiency ultra-wideband power amplifier in GaN technology. Electron. Lett., 44 (2) (2008), 130131.Google Scholar
[2] Andersson, C.M.; Moon, J.; Fager, C.; Kim, B.; Rorsman, N.: Decade bandwidth high efficiency GaN HEMT power amplifier designed with resistive harmonic loading, in IEEE Int. Microwave Symp., Montreal, 2012, 13.Google Scholar
[3] Wright, P.; Lees, J.; Benedikt, J.; Tasker, P.J.; Cripps, S.C.: A methodology for realizing high efficiency class-J in a linear and broadband PA. IEEE Trans. Microw. Theory Tech., 57 (12) (2009), 31963204.CrossRefGoogle Scholar
[4] Chen, K.; Peroulis, D.: Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks. IEEE Trans. Microw. Theory Tech., 59 (12) (2011), 31623173.Google Scholar
[5] Tuffy, N.; Guan, L.; Zhu, A.; Brazil, T.J.: A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers. IEEE Trans. Microw. Theory Tech., 60 (6) (2012), 19521963.Google Scholar
[6] Chen, K.; Peroulis, D.: Design of broadband high-efficiency power amplifier using in-band Class-F−1/F mode-transferring technique, in IEEE Int. Microwave Symp., Montreal, 2012, 13.Google Scholar
[7] Ayasli, A.; Reynolds, L.D.; Mozzi, R.L.; Hanes, L.K.: 2–20 GHz GaAs traveling-wave power amplifier. IEEE Trans. Microw. Theory Tech., 32 (1984), 290295.CrossRefGoogle Scholar
[8] Tanany, A.; Gruner, D.; Boeck, G.: Harmonically tuned 100 W broadband GaN HEMT power amplifier with more than 60% PAE, in European Microwave Conf., 2011, 159162.Google Scholar
[9] Arnous, M.T.; Bathich, K.; Preis, S.; Gruner, D.; Boeck, G.: 100 W highly efficient octave bandwidth GaN-HEMT power amplifier, in 19th Int. Conf. on Microwave Radar and Wireless Communications, 2012, 289292.Google Scholar
[10] Ehsan, N.; Vanhille, K.J.; Rondineau, S.; Popovic, Z.: Micro-coaxial impedance transformers. IEEE Trans. Microw. Theory Tech., 58 (11) (2010), 29082914.CrossRefGoogle Scholar
[11] Canning, T., Powell, J.R.; Cripps, S.C.: Optimal design of broadband microwave Baluns using single-layer planar circuit technology. IEEE Trans. Microw. Theory Tech., 62 (5) (2014), 11831191.CrossRefGoogle Scholar
[12] Zhang, Z.; Boeck, G.: Broadside-coupled multi-octave impedance transformer, in European Microwave Conf., 2014, 3740.Google Scholar
[13] Arnous, M.T.; Zhang, Z., Rautschke, F.; Boeck, G.: Multi-octave GaN high power amplifier using planar transmission line transformer, in European Microwave Conf., 2016.CrossRefGoogle Scholar
[14] Guanella, G.: New method of impedance matching in radio frequency circuits. Brown Boveri Rev, 31 (1944), 327.Google Scholar
[15] Mongia, R.K.; Bahl, I.J.; Bhartia, P.; Hong, J.: Characteristics of Planar Transmission Lines, in RF and Microwave Coupled-Lines Circuits, 2nd ed., Artech House, Inc., Norwood, 2007.Google Scholar
[16]“CGH40120F datasheet,” Cree Inc., Durham, USA, rev. 3, 2015. [Online] http://www.wolfspeed.com/downloads/dl/file/id/399/product/122/cgh40120f.pdf Google Scholar
[17] Arnous, M.T.; Bathich, K.; Preis, S.; Boeck, G.: Harmonically-tuned octave bandwidth 200 W GaN power amplifier, in Microwave Integrated Circuits Conf., 2012, 429432.Google Scholar
[18] Cipriani, E.; Colantonio, P.; Di Paolo, F.; Giannini, F.; Giofre, R.: A highly efficient octave bandwidth high power amplifier in GaN technology, in Proc. of the 41th European Microwave Conf., UK, 2011, 188191.Google Scholar
[19] Saad, P.; Maassen, D.; Boeck, G.: Efficient and wideband two-stage 100 W GaN-HEMT power amplifier, in European Microwave Integrated Circuit Conf., 2014, 337340.Google Scholar
[20] Krishnamurthy, K.; Lieu, D.; Vetury, R.; Martin, J.: A 0.1–1.8 GHz, 100 W GaN HEMT power amplifier module,” in Compound Semiconductor Integrated Circuit Symp., 2010, 14.Google Scholar