Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T19:42:04.872Z Has data issue: false hasContentIssue false

Multiband-coupled sectoral antenna using high and low dielectric constant substrates

Published online by Cambridge University Press:  24 July 2014

Abhishek Kandwal*
Affiliation:
Electromagnetic Analysis Laboratory, Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan-173234, India
Jai Verdhan Chauhan
Affiliation:
Electromagnetic Analysis Laboratory, Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan-173234, India
Sunil Kumar Khah
Affiliation:
Electromagnetic Analysis Laboratory, Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan-173234, India
*
Corresponding author: A. Kandwal Email: [email protected]

Abstract

Design analysis of multiband-coupled stacked sectoral antenna array with finite ground plane using high low dielectric constant substrates is proposed in this paper for modern communication systems and applied physics. Multiband planar antennas have been extensively developed due to demands for integration of wireless communication systems. In this paper, we present the design and development of a multiband microstrip antenna array with parasitic coupling and stacking using two different substrates. The stacked designed antenna resonates at three different frequencies: 3.8, 5.4, and 10 GHz; therefore, showing a multiband property with good radiation (far-field) characteristics. A significant comparison study is also presented considering different dielectric constant substrates. The proposed antenna is an attractive solution for different wireless communication systems such as mobile systems, satellite systems, etc.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Puente, C.; Romeu, J.; Pous, R.; Cardama, A.: On the behavior of the Sierpinski multiband fractal antenna. IEEE Trans. Antennas Propag., 46 (1998), 517524.Google Scholar
[2]Song, C.T.P.; Hall, P.S.; Ghafouri-Shiraz, H.: Multiband multiple ring monopole antennas. IEEE Trans. Antennas Propag, 51 (2003), 722729.Google Scholar
[3]Chayono, R.; Haneishi, M.; Kimura, Y.: Radiation properties of multiband circular MSA with half-ring slots. IEICE Trans. Electron., E90-C (9), (2007), 17931800.Google Scholar
[4]Kumar, G.; Ray, K.P.: Broadband MicrostripAntennas, Artech House, Norwood, MA, 2003.Google Scholar
[5]Sittironnarit, T.; Ali, M.: Analysis and design of a dual-band folded microstrip patch antenna for handheld device application,in IEEE Southeast Conf. Proc., 2002, 255–258.Google Scholar
[6]Yang, F.; Rahmat-Samii, Y.: A compact dual band circularly polarized antenna design for mars rover mission,in IEEE Int. symp. Antennas and Propagation Digest, vol. 3, 2003, 858–861.Google Scholar
[7]Asrokin, A.; Rahim, M.K.A.; Abdelaziz, M.Z.A.: Dual band microstrip antenna for wireless LAN application, in Proc. of the 2005 Asia Pacific Conf. Applied Electromagnetics, Johor Bahru, Johor, Malaysia, 2005, 10698–10701.Google Scholar
[8]Vaidya, A.R.; Gupta, R.K.; Mishra, S.K.; Mukherjee, J.: Efficient high gain with low side lobe level antenna structures using parasitic patches on multilayer superstrate. Microw. Opt. Technol. Lett., 54 (2012), 14881493.CrossRefGoogle Scholar
[9]Abdelaziz, A.A.: Bandwidth enhancement of microstrip antenna. Prog. Electromagn. Res., 63 (2006), 311317.Google Scholar
[10]Nayeri, P.; Yang, F.; Elsherbeni, A.Z.: Bandwidth improvement of reflectarray antennas using closely spaced elements. Prog. Electromagn. Res. C, 18 (2011), 1929.Google Scholar
[11]Kandwal, A.; Chakravarty, T.; Khah, S.K.: Circuital method for admittance calculation of gap coupled sectoral antennas. Microw. Opt. Technol. Lett., 54 (2012), 14881493.CrossRefGoogle Scholar
[12]Svantesson, T.; Ranheim, A.: Mutual coupling effects on the capacity of multi element antenna systems, in Proc. IEEE ICASP’01. Vol. 4, 2001, 2485–2488.Google Scholar
[13]Janaswamy, R.: Effect of element mutual coupling on the capacity of fixed length linear arrays. IEEE Antennas Wirel. Propag. Lett., 1 (2002), 157160.Google Scholar
[14]Chiurtu, N.; Rimoldi, B.; Telatar, E.; Pauli, V.: Impact of correlation and coupling on the capacity of MIMO systems, in Proc. IEEE ISSPIT’03, 2003, 154–157.Google Scholar
[15]Andersen, J.B.; Lau, B.K.: On closely coupled dipoles in a random field. IEEE Antennas Wirel. Propag. Lett., 5 (2006), 7375.Google Scholar
[16]Kildal, P.S.; Rosengren, K.: Electromagnetic analysis of effective and apparent diversity gain of two parallel dipoles. IEEE Antennas Wirel. Propag. Lett., 2 (2003), 913.Google Scholar
[17]Long, S.A.; Walton, M.D.: Mutual coupling between stacked square microstrip antennas fed on their diagonal. IEEE Trans. Antenna Propag., 39 (1991), 10491051.Google Scholar
[18]Morris, M.L.; Jensen, M.A.: Improved network analysis of coupled antenna diversity performance. IEEE Trans. Wirel. Commun., 4 (2005), 19281934.Google Scholar
[19]Wallace, J.W.; Jensen, M.A.: Mutual coupling in MIMO wireless systems: a rigorous network theory analysis. IEEE Trans. Antennas Propag., 3 (2004), 98105.CrossRefGoogle Scholar
[20]Yin, X.C.; Ruan, C.L.; Mo, S.G.; Ding, C.Y.; Chu, J.H.: A compact ultra-wideband microstrip antenna with multiple notches. Prog. Electromagn. Res., 84 (2008), 321332.Google Scholar
[21]Au, T.M.; Luk, K.M.: Effect of parasitic element on the characteristics of microstrip antenna. IEEE Transact. Antennas Propag., 39 (1991), 12471251.Google Scholar