Published online by Cambridge University Press: 24 July 2015
As a recently proposed concept, multiple-input multiple-output (MIMO) radars exhibit much higher spatial resolution than traditional transmitter based radars because of the synthesized virtual array. In this paper, the problem of minimum redundancy (MR)-MIMO array synthesis is addressed, which seeks to maximize the virtual array aperture of MIMO radars for a given number of transmitting and receiving elements. A hybrid method combining autocorrelation property of cyclic difference sets (CDSs) and global search characteristics of ant colony optimization (ACO) is proposed for a rapid and numerically-effective exploration of MR-MIMO array configurations. Numerical experiments validate the proposed method, showing improvements in convergence rate and computational cost with respect to bare ACO-based search as well as improvements in the generality and configuration variety with respect to the CDS-based method.