Hostname: page-component-6587cd75c8-2cm9h Total loading time: 0 Render date: 2025-04-23T11:30:51.015Z Has data issue: false hasContentIssue false

A miniaturized CPW-fed CSRR-loaded quad-port MIMO antenna for 5.5/6.5 GHz wireless applications

Published online by Cambridge University Press:  28 July 2023

D. Rajesh Kumar*
Affiliation:
Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamilnadu, India
T. Sangeetha
Affiliation:
Department of Electronics and Communication Engineering, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu, Tamilnadu, India
K. G. Sujanth Narayan
Affiliation:
Department of Electronics and Communication Engineering, SASTRA Deemed University, Thanjavur, Tamilnadu, India
G. Venkat Babu
Affiliation:
Department of Electronics and Communication Engineering, SASTRA Deemed University, Thanjavur, Tamilnadu, India
V. Prithivirajan
Affiliation:
Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamilnadu, India
M. S. K. Manikandan
Affiliation:
Department of Electronics and Communication Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu, India
*
Corresponding author: D. Rajesh Kumar; Email: [email protected]

Abstract

For forthcoming wireless applications, a small and highly decoupled complementary split ring resonators (CSRR)–loaded co-planar waveguide (CPW)–fed antenna for dual-band applications is investigated. The low-profile antenna consists of a CSRR-loaded rectangular radiating element with a truncated bottom, giving a wideband performance over the frequency ranges of 5.28–5.52 GHz and 6–7.2 GHz. The antenna has been printed on a widely used FR4 substrate measuring 7.5 × 10.5 × 1.6 mm3 in volume. This research’s suggested antenna is turned into a 4 × 4 multi input multi output (MIMO) construction using a 25 × 25 mm2 printed circuit board. Individual antennas were isolated by nearly 20 dB without using a decoupling device. The antenna has been built, and the measured and simulated results correspond well. Computing envelope correlation coefficient (ECC), channel capacity (CC), and channel capacity loss (CCL) further validates the antenna’s performance (−). The antenna has an overall gain of around 2.54 dBi and a radiation efficiency of approximately 89% throughout the relevant spectral range, which is much better for wireless applications. The suggested antenna’s omnidirectional emission pattern makes it a potential contender for future wireless and cellular applications.

Type
AntennaDesign, Modelling and Measurements
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Kuo, YL and Wong, KL (2003) Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations. IEEE Transactions on Antennas and Propagation 51(9), 21872192.Google Scholar
Liu, WC, Chen, WR and Wu, CM (2004) Printed double S-shaped monopole antenna for wideband and multiband operation of wireless communications. IEE Proceedings—Microwaves, Antennas and Propagation 151(6), 473476.10.1049/ip-map:20041035CrossRefGoogle Scholar
Ammann, MJ and Farrell, R (2005) Dual-band monopole antenna with stagger-tuned arms for broad banding. In IEEE International Workshop on Antenna Technology, 278281.Google Scholar
John, M and Ammann, MJ (2006) Integrated antenna for multiband multi-national wireless combined with GSM1800/PCS1900/IMT200 extension. Microwave and Optical Technology Letters 48(3), 613615.10.1002/mop.21423CrossRefGoogle Scholar
Ge, Y, Esselle, KP and Bird, TS (2006) Compact triple-band multiband monopole antenna. International Workshop on Antenna Technology 1, 172175.Google Scholar
Wang, H (2006) Dual-resonance monopole antenna with tuning stubs. IEE Proceedings—Microwaves, Antennas and Propagation 153(4), 395399.10.1049/ip-map:20050110CrossRefGoogle Scholar
Wang, H and Zheng, M (2008) Triple-band wireless local area network monopole antenna. IET Microwaves, Antennas & Propagation 2(4), 367372.10.1049/iet-map:20070120CrossRefGoogle Scholar
Herraiz-Martínez, FJ, Zamora, G, Paredes, F and Bonache, J (2011) Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs. IEEE Antennas and Wireless Propagation Letters 10, 15281531.10.1109/LAWP.2011.2181309CrossRefGoogle Scholar
Long, S and Walton, M (1979) A dual-frequency stacked circular-disc antenna. IEEE Transactions on Antennas and Propagation 27(2), 270273.10.1109/TAP.1979.1142078CrossRefGoogle Scholar
Khan, MU and Sharawi, MS (2014) Isolation improvement using an MTM inspired structure with a patch-based MIMO antenna system. In The 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, 27182722.10.1109/EuCAP.2014.6902386CrossRefGoogle Scholar
Sharawi, MS, Khan, MU, Numan, AB and Aloi, DN (2013) A CSRR loaded MIMO antenna system for ISM band operation. IEEE Transactions on Antennas and Propagation 61(8), 42654274.10.1109/TAP.2013.2263214CrossRefGoogle Scholar
Ramachandran, A, Mathew, S, Viswanathan, VP, Pezholil, M and Kesavath, V (2016) Diversity-based four-port multiple input multiple output antenna loaded with interdigital structure for high isolation. IET Microwaves, Antennas & Propagation 10(15), 16331642.10.1049/iet-map.2015.0828CrossRefGoogle Scholar
Ramachandran, A, Valiyaveettil Pushpakaran, S, Pezholil, M and Kesavath, V (2016) A four-port MIMO antenna using concentric square-ring patches loaded with CSRR for high isolation. IEEE Antennas and Wireless Propagation Letters 15, 11961199.10.1109/LAWP.2015.2499322CrossRefGoogle Scholar
Luo, Y, Chu, QX, Li, JF and Wu, YT (2013) A planar H-shaped directive antenna and its application in compact MIMO Antenna. IEEE Transactions on Antennas and Propagation 61(9), 48104814.10.1109/TAP.2013.2267193CrossRefGoogle Scholar
Liao, WJ, Hsieh, CY, Dai, BY and Hsiao, BR (2014) Inverted-F/slot integrated dual-band four-antenna system for WLAN Access Points. IEEE Antennas and Wireless Propagation Letters 14, 847850.10.1109/LAWP.2014.2381362CrossRefGoogle Scholar
MoradiKordalivand, A, Rahman, TA and Khalily, M (2014) Common elements wideband MIMO antenna system for WiFi/LTE access-point applications. IEEE Antennas and Wireless Propagation Letters 13, 16011604.10.1109/LAWP.2014.2347897CrossRefGoogle Scholar
Sonkki, M, Pfeil, D, Hovinen, V and Dandekar, KR (2014) Wideband planar four-element linear antenna array. IEEE Antennas and Wireless Propagation Letters 13, 16631666.10.1109/LAWP.2014.2350259CrossRefGoogle Scholar
Herraiz-Martínez, J, García-Muñoz, LE, Gonzalez-Ovejero, D, Gonzalez-Posadas, V and Segovia-Vargas, D (2009) Dual-frequency printed dipole loaded with split ring resonators. IEEE Antennas and Wireless Propagation Letters 8, 137140.10.1109/LAWP.2009.2012402CrossRefGoogle Scholar
Wang, H, Liu, L, Zhang, Z, Li, Y and Feng, Z (2015) A wideband compact WLAN/WiMAX MIMO antenna based on dipole with V-shaped ground branch. IEEE Transactions on Antennas and Propagation 63(5), 22902295.10.1109/TAP.2015.2405091CrossRefGoogle Scholar
Sharawi, MS, Ikram, M and Shamim, A (2017) A two concentric slot loop based connected array MIMO antenna system for 4 G/5 G terminals. IEEE Transactions on Antennas and Propagation 99, 11.Google Scholar
Kumar, A, Ansari, AQ, Kanaujia, BK and Kishor, J (2018) High isolation compact four-port MIMO antenna loaded with CSRR for multiband applications. Frequenz 72(9–10), 415427.10.1515/freq-2017-0276CrossRefGoogle Scholar
Dash, JC and Sarkar, D (2022) A four-port CSRR-loaded dual-band MIMO antenna with suppressed higher order modes. IEEE Access 10, 3077030778.10.1109/ACCESS.2022.3160831CrossRefGoogle Scholar
Montero-de Paz, J, Ugarte-Munoz, E, Herraiz-Martinez, FJ, Gonzalez-Posadas, V, Garcia-Munoz, LE and SegoviaVargas, D (2011) Multi-frequency self-diplexed single patch antennas loaded with split ring resonators. Progress In Electromagnetics Research 113, 4766.10.2528/PIER10121703CrossRefGoogle Scholar
Herraiz-Martínez, FJ, Paredes, F, Zamora, G, Martin, F and Bonache, J (2012) Dual-band printed dipole antenna loaded with open complementary split-ring resonators for wireless applications. Microwave and Optical Technology Letters 54(4), 10141017.10.1002/mop.26728CrossRefGoogle Scholar
Caloz, C, Itoh, T and Rennings, A (2008) CRLH metamaterial leaky wave and resonant antennas. IEEE Antennas and Propagation Magazine 50(5), 2539.10.1109/MAP.2008.4674709CrossRefGoogle Scholar