Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T23:51:05.006Z Has data issue: false hasContentIssue false

Millimeter-wave GaN-based HEMT development at ETH-Zürich

Published online by Cambridge University Press:  20 April 2010

Haifeng Sun
Affiliation:
Millimeter-Wave Electronics Group, ETH-Zürich – Gloriastrasse 35, CH-8092 Zürich, Switzerland. Phone: +41 44 632 8775
Diego Marti
Affiliation:
Millimeter-Wave Electronics Group, ETH-Zürich – Gloriastrasse 35, CH-8092 Zürich, Switzerland. Phone: +41 44 632 8775
Stefano Tirelli
Affiliation:
Millimeter-Wave Electronics Group, ETH-Zürich – Gloriastrasse 35, CH-8092 Zürich, Switzerland. Phone: +41 44 632 8775
Andreas R. Alt
Affiliation:
Millimeter-Wave Electronics Group, ETH-Zürich – Gloriastrasse 35, CH-8092 Zürich, Switzerland. Phone: +41 44 632 8775
Hansruedi Benedickter
Affiliation:
Millimeter-Wave Electronics Group, ETH-Zürich – Gloriastrasse 35, CH-8092 Zürich, Switzerland. Phone: +41 44 632 8775
C.R. Bolognesi*
Affiliation:
Millimeter-Wave Electronics Group, ETH-Zürich – Gloriastrasse 35, CH-8092 Zürich, Switzerland. Phone: +41 44 632 8775
*
Corresponding author: C.R. Bolognesi Email: [email protected]

Abstract

We review the AlGaN/GaN high electron mobility transistor (HEMT) activities in the Millimeter-Wave Electronics Group at ETH-Zürich. Our group's main thrust in the AlGaN/GaN arena is the extension of device bandwidth to higher frequency bands. We demonstrated surprising performances for AlGaN/GaN HEMTs grown on high-resistivity (HR) silicon (111) substrates, and extended cutoff frequencies of 100 nm gate devices well into the millimeter (mm)-wave domain. Our results narrow the performance gap between GaN-on-SiC (or sapphire) and GaN-on-silicon and establish GaN-on-Si as a viable technology for low-cost mm-wave electronics. We here contrast the difference in behaviors observed in our laboratory between nominally identical devices built on high-resistivity silicon (HR-Si) and on sapphire substrates; we show high-speed devices with high-cutoff frequencies and breakdown voltages which combine fT,MAX × BV products as high as 5–10 THz V, and show AlGaN/GaN HEMTs with fT values exceeding 100 GHz on HR-Si. Although the bulk of our activities have so far focused on AlGaN/GaN HEMTs on HR-Si, our process produces excellent device performances when applied to GaN HEMTs on SiC as well: 100 nm gate transistors with fT > 125 GHz have been realized at ETH-Zürich.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Palacios, T. et al. : High-power AlGaN/GaN HEMTs for Ka-band applications. IEEE Electron Device Lett., 26 (2005), 781783. doi: 10.1109/LED.2005.857701.CrossRefGoogle Scholar
[2]Higashiwaki, M.; Mimura, T.; Matsui, T.: Millimeter-wave GaN HFET technology. Proc. SPIE, 6894 (2008), 68941L1-68941L9.Google Scholar
[3]Sun, H.F.; Alt, A.R.; Benedickter, H.; Bolognesi, C.R.: High-performance 0.1 µm gate AlGaN/GaN HEMTs on silicon with low-noise figure at 20 GHz. IEEE Electron Device Lett., 30 (2009), 107109. doi: 10.1109/LED.2008.2010339.Google Scholar
[4]Sun, H.F.; Alt, A.R.; Benedickter, H.; Bolognesi, C.R.: 100-nm gate AlGaN/GaN HEMTs on silicon with fT = 90 GHz. Electron. Lett., 47 (2009), 376377. doi: 10.1049/el.2009.0074.CrossRefGoogle Scholar
[5]Sun, H.F.; Alt, et al. : 102-GHz AlInN/GaN HEMTs on silicon with 2.5-W/mm output power at 10 GHz. IEEE Electron Device Lett., 30 (2009), 796798. doi: 10.1109/LED.2009.2023603.CrossRefGoogle Scholar
[6]Sun, H.F.; Alt, A.R.; Marti, D.; Vetter, M.; Benedickter, H.; Bolognesi, C.R.: Small-signal microwave performance comparison of deep submicron AlGaN/GaN high electron mobility transistors on high-resistivity silicon and insulating substrates. Appl. Phys. Express, 2 (2009), 111002-1–3. doi: 10.1143/APEX.2.111002-1–111002-3.CrossRefGoogle Scholar
[7]Harrison, I.; Clayton, N.W.; Jeffs, N.J.: High temperature RF characterization of SiN passivated and unpassivated AlGaN/GaN HFETs. Phys. Status Solidi (a), 188 (2001), 275278. doi: 10.1002/1521-396X(200111)188:1.3.0.CO;2-D>CrossRefGoogle Scholar
[8]Green, B.M.; Chu, K.K.; Chumbes, E.M.; Smart, J.A.; Shealy, J.R.; Eastman, L.F.: The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs. IEEE Electron Device Lett., 21 (2000), 268270. doi: 10.1109/55.843146.CrossRefGoogle Scholar
[9]Kikkawa, T.; Imanishi, K.; Kanamura, M.; Joshin, K.: Recent progress of highly reliable GaN-HEMTs for mass production, in CS MANTECH Conf. Proc., April 2006, 171174.Google Scholar
[10]del Alamo, J.A.; Somerville, M.H.: Breakdown in millimeter-wave power InP HEMT's: a comparison with GaAs PHEMT's. IEEE J. Solid-State Circuits, 34 (1999), 12041211. doi: 10.1109/4.782077.CrossRefGoogle Scholar
[11]Sun, H.F. et al. : 100 nm Gate (Al,In)N/GaN HEMTs grown on SiC with f T = 144 GHz. IEEE Electron Device Lett., 31 (2010), accepted for publication, 293–295.Google Scholar