Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T13:25:56.880Z Has data issue: false hasContentIssue false

Maximizing main-lobe to the side-lobe level for the non-uniform chaos game planar antenna array using an IWO algorithm

Published online by Cambridge University Press:  12 December 2012

Ahmed Najah Jabbar*
Affiliation:
Department of Electric Engineering, University of Babylon, Iraq
Ali Shaban Hasooni
Affiliation:
Department of Electric Engineering, University of Babylon, Iraq
Muthana Khallil Ibrahim
Affiliation:
Department of Electric Engineering, University of Babylon, Iraq
*
Corresponding author: A.N. Jabbar Email: [email protected]

Abstract

In this study, we present the implementation of invasive weed optimization (IWO) in the maximization of main-lobe to side-lobe level for the non-uniform planar antenna array. The antenna arrays investigated in this study are generated using the chaos game algorithm (CGA) and shaped into selected fractal geometries chosen on the basis of their interesting performance. This CGA is picked out in order to overcome the limitations found in the fractal arrays. All the attained results are compared with the results produced by a well-known optimization algorithm that is the particle swarm optimization (PSO). In all the optimized arrays, IWO shows superior optimization results compared with PSO.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Deng, J.-H. et al. : Low complexity hybrid smart antenna with directional elements over frequency-selective fading channel, in 13th Int. Conf. Advanced Communication Technology (ICACT), 2011, 110114.Google Scholar
[2]Jabbar, A.N.: A novel ultra-fast ultra-simple adaptive blind beamforming algorithm for smart antenna arrays. Prog. Electromagn. Res. B, 35 (2011), 329348.Google Scholar
[3]Roberts, W. et al. : Sparse antenna array design for mimo active sensing applications. IEEE Trans. Antennas Propag., 59 (3) (2011), 846858.Google Scholar
[4]Closas, P.; Fernández-Prades, C.: A statistical multipath detector for antenna array based GNSS receivers. IEEE Trans. Wirel. Commun., 10 (3) (2011), 916929.Google Scholar
[5]Alberto, R.; Panduro, M.A.; del Rio, C.: Design of concentric ring antenna arrays for isoflux radiation in GEO satellites. IEICE Electron. Express, 8 (7) (2011), 484490.Google Scholar
[6]Oliveri, G.; Rocca, P.; Massa, A.: array antenna architectures for solar power satellites and wireless power transmission, in XXXth URSI General Assembly and Scientific Symp. 2011, Istanbul, 2011, 14.Google Scholar
[7]Lu, B. et al. : Analysis and synthesis of radar cross section of array antennas. Prog. Electromagn. Res. M, 16 (2011), 7384.Google Scholar
[8]Jabbar, A.N.: New elements concentrated planar fractal antenna arrays for celestial surveillance and wireless communications. ETRI J., 33 (6) (2011), 849856.Google Scholar
[9]Volmer, C. et al. : A descriptive model for analyzing the diversity performance of compact antenna arrays. IEEE Trans. Antennas Propag., 57 (2) (2009), 395405.Google Scholar
[10]Elhefnawy, M.; Ismail, W.: A microstrip antenna array for indoor wireless dynamic environments. IEEE Trans. Antennas Propag., 57 (12) (2009), 39984002.Google Scholar
[11]Singh, H.; Jha, R.M.: Trends in adaptive array processing. Int. J. Antennas Propag., 2012 (2012), 120.Google Scholar
[12]Chatterjee, A.; Mahanti, G.K.: Design of fully digital controlled reconfigurable dual-beam concentric ring array antenna using gravitational search algorithm. Prog. Electromagn. Res. C, 18 (2011), 5972.Google Scholar
[13]Spasos, M. et al. : Optimization of a 12.5 GHz microstrip antenna array using taguchi's method. Int. J. Antennas Propag., 2011 (2011), 19.CrossRefGoogle Scholar
[14]Mandeep, K.; Jagtar, S.: Optimization of directivity for rectangular antenna arrays using soft computing. Int. J. Eng. Sci. Technol. (IJEST), 3 (8) (2011).Google Scholar
[15]Chen, L.-L. et al. : Hybrid-surrogate-model-based effecient global optimization for high-dimensional antenna design. Prog. Electromagn. Res., 124 (2012), 85100.Google Scholar
[16]Wang, X.-K.; Jiao, Y-C.; Tan, Y-Y.: Gradual thinning synthesis for linear array based on iterative Fourier techniques. Prog. Electromagn. Res., 123 (2012), 299320.CrossRefGoogle Scholar
[17]Li, N.: The application of sparse antenna array synthesis based on improved mind evolutionary algorithm. Int. J. Intell. Syst. Appl., 3 (2011), 4046.Google Scholar
[18]Binelo, M.O. et al. : MIMO array capacity optimization using a genetic algorithm. IEEE Trans. Veh. Technol., 60 (6) (2011), 24712481.Google Scholar
[19]Das, S. et al. : Linear antenna array synthesis with decreasing sidelobe and narrow beamwidth, in Proc. Int. Conf. Advances in Electrical and Electronics, 2011, 1014.Google Scholar
[20]Rattan, M.; Patterh, M.; Sohi, B.S.: Antenna array optimization using evolutionary approaches. Apeiron, 15 (1) (2008), 7893.Google Scholar
[21]Mallahzadeh, A.R.; Oraizi, H.; Davoodi-Rad, Z.: Application of the invasive weed optimization technique for antenna configuration. Prog. Electromagn. Res., 79 (2008), 137150.CrossRefGoogle Scholar
[22]Golubovi, R.M.; Olcan, D.I.: Antenna optimization using particle swarm optimization algorithm. J. Autom. Control, 16 (2006), 2124.Google Scholar
[23]Li, X.T. et al. : Improved artificial bee colony for design of a reconfigurable antenna array with discrete phase shifters. Prog. Electromagn. Res. C, 25 (2012), 193208.Google Scholar
[24]Zaharis, Z.D.; Skeberis, C.; Xenos, T.D.: Improved antenna array adaptive beamforming with low side lobe level using a novel adaptive invasive weed optimization method. Prog. Electromagn. Res., 124 (2012), 137150.Google Scholar
[25]Chang, L. et al. : A hybrid method based on differential evolution and continuous ant colony optimization and its application on wideband antenna design. Prog. Electromagn. Res., 122 (2012), 105118.Google Scholar
[26]Chatterjee, A.; Mahanti, G.K.; Chatterjee, A.: Design of a fully digital controlled reconfigurable switched beam concentric ring array antenna using firefly and particle swarm optimization algorithm. Prog. Electromagn. Res. B, 36 (2012), 113131.Google Scholar
[27]Dimililer, K.; Haydar, A.: A modified differential evolution algorithm in sparse linear antenna arrays synthesis. Acad. Res. Int., 2 (1) (2012).Google Scholar
[28]Bataineh, M.H.: On Chebyshev array design using particle swarm optimization. J. Electromagn. Anal. Appl., 3 (2011), 213219.Google Scholar
[29]Zaman, M.A.: Phased array synthesis using modified particle swarm optimization. J. Eng. Sci. Technol. Rev., 4 (1) (2011), 6873.Google Scholar
[30]Wang, Y.: Synthesis of antenna array by complex-valued genetic algorithm. IJCSNS Int. J. Comput. Sci. Netw. Secur., 11 (1) (2011), 9196.Google Scholar
[31]Wang, W-B.: Application of chaotic particle swarm optimization algorithm to pattern synthesis of antenna arrays. Prog. Electromagn. Res., 115 (2011), 173189.Google Scholar
[32]Zaharis, Z.D.; Yioultsis, T.V.: A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated Boolean PSO. Prog. Electromagn. Res., 117 (2011), 165179.CrossRefGoogle Scholar
[33]Arce, A.; Covarrubias, D.H.; Panduro, M.A.: Performance evaluation of stochastic algorithms for linear antenna arrays synthesis under constrained conditions. J. Sel. Areas Telecommun., May ed., (2011), 4147.Google Scholar
[34]Mehrabian, A.R.: A Matlab Toolbox for Invasive Weed Optimization (IWO) Algorithm, Non-Published Article, can be found at http://users.encs.concordia.ca/~a_mehr/publications.htmGoogle Scholar
[35]Mailloux, R.J.: Phased array antenna handbook, 2nd ed., Artech House, Boston, 2005.Google Scholar
[36]Gross, F.B.: Smart Antennas for Wireless Communications with MATLAB, McGraw-Hill, New York, 2005.Google Scholar
[37]Blaunstein, N.; Christodoulou, C.: Radio propagation and adaptive antennas for wireless communication links terrestrial, atmospheric and ionospheric, Wiley Interscience, New York, 2007.Google Scholar
[38]Jaggard, D.L.; Jaggard, A.D.: Cantor ring arrays. Microw. Opt. Technol. Lett., 19 (2) (1998), 866869.Google Scholar
[39]Kritikos, H.N.; Jaggard, D.L.: Recent advances in electromagnetic theory, Springer-Verlag, New York, 1990.Google Scholar
[40]Bhattacharyya, A.K.: Phased array antennas Floquet analysis, synthesis, BFNs, and active array systems, John Wiley & Sons, New Jersey, 2006.Google Scholar
[41]Mehrabian, A.R.; Lucas, C.: A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform., 1 (2006), 355366.Google Scholar
[42]Ahmed, A.; Ruhul Amin, B.M.: Optimization of power system stabilizer for multi-machine power system using invasive weed optimization algorithm. Int. J. Comput. Appl., 39 (7) (2012), 2834.Google Scholar
[43]Kennedy, J.; Eberhart, R.: Particle swarm optimization, in Proc. IEEE Int. Conf. on Neural Networks IV, 1995, 19421948.Google Scholar
[44]Tanji, Y.; Matsushita, H.; Sekiya, H.: Acceleration of PSO for designing class E amplifier, in Int. Symp. Nonlinear Theory and its Applications NOLTA2011, Kobe, Japan, 4–7 September 2011, 491494.Google Scholar
[45]Barnsley, M.: Fractals Everywhere, Morgan Kaufmann, San Diego, CA, USA, 1993.Google Scholar
[46]Werneer, D.H.; Haupt, R.L.; Werner, P.L.: Fractal antenna engineering: theory and design of fractal antenna arrays. IEEE Antennas Propag. Mag., 441 (5) (1999), 3758.Google Scholar
[47]Hussein, R.T.; Jibrael, F.J.: Comparison of the radiation pattern of fractal and conventional linear array antenna. Prog. Electromagn. Res. Lett., 4 (2008), 183190.Google Scholar
[48]Azaro, R. et al. : Synthesis of a prefractal dual-band monopolar antenna for GPS applications. IEEE Antennas Wirel. Propag. Lett., 5 (1) (2006), 361364.Google Scholar
[49]Van Trees, H.L.: Optimum Array Processing, Wiley Interscience, New York, 2002.Google Scholar
[50]Hall, P.J.: The square kilometer array: an engineering perspective, Springer, Netherlands, 2005.Google Scholar
[52]de Lera-Acedo, E. et al. : System noise analysis of an ultra wide band aperture array element for low frequency radio astronomy, in Proc. 6th IASTED Int. Conf. (Banff, Alberta, Canada) Antennas, Radar, and Wave Propagation (ARP), 2009, 118123.Google Scholar