Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T03:37:32.779Z Has data issue: false hasContentIssue false

Joint RF and large-signal stability optimization of MMIC power combining amplifiers

Published online by Cambridge University Press:  08 August 2013

Natanael Ayllon*
Affiliation:
Departamento de Electricidad y Electrónica, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
Juan-Mari Collantes
Affiliation:
Departamento de Electricidad y Electrónica, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
Aitziber Anakabe
Affiliation:
Departamento de Electricidad y Electrónica, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
Geoffroy Soubercaze-Pun
Affiliation:
DCT/RF/HT, CNES, 18 Av. Edouard Belin, 31401, Toulouse, France
Stephane Forestier
Affiliation:
Thales Alenia Space – France, 26 av. J. F. Champollion, 31037, Toulouse, France
Dominique Langrez
Affiliation:
Thales Alenia Space – France, 26 av. J. F. Champollion, 31037, Toulouse, France
*
Corresponding author: N. Ayllon Email: [email protected]

Abstract

In this paper, authors report on an enhanced approach for the design of monolithic microwave integrated circuit (MMIC) power combining amplifiers. Commonly used techniques for the stabilization of such circuits are empirical and too conservative. This leads very often to a non-desired degradation of the radio frequency (RF) performances that are inherent to the physical properties of such stabilization networks at the fundamental frequency of operation. The methodology proposed here is based on the use of large-signal optimization processes that combine RF and stability analyses from the early stages of the design. This approach results in an improvement of the RF performances while sufficient stability margins are preserved. The optimization procedure is explained on a Ku-band MMIC power amplifier for space-borne communications.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Kassakian, J.G.; Lau, D.: An analysis and experimental verification of parasitic oscillations in paralleled power MOSFET's. IEEE Trans. Electron. Devices, ED-31 (7) (1984), 959963.Google Scholar
[2]Freitag, R.G.; Lee, S.H.; Krafcsik, D.M.; Dawson, D.E.; Degenford, J.E.: Stability and improved circuit modeling considerations for high power MMIC amplifiers, in IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest, May 1988, 125128.Google Scholar
[3]Freitag, R.G.: A unified analysis of MMIC power amplifier stability, in IEEE MTT-S International Microwave Symposium Digest, Albuquerque, NM, June 1992, vol. 1, 297–300.Google Scholar
[4]Mochizuki, M.; Nakayama, M.; Tarui, Y.; Itoh, Y.; Tsuji, S.; Takagi, T.: Nonlinear analysis of f0/2 loop oscillation of high power amplifiers, in IEEE MTT-S International Microwave Symposium Digest, May 1995, vol. 2, 702–709.Google Scholar
[5]Costantini, A.; Vannini, G.; Filicori, F.; Santarelli, A.: Stability analysis of multi-transistor microwave power amplifiers, in Gallium Arsenide Appl. Symposium Tech. Digest, Paris, France, October 2000, 342–345.Google Scholar
[6]Ramberger, S.; Merkle, T.: A symmetry device to speed up circuit simulation and stability tests, in IEEE MTT-S International Microwave Symposium Digest, June 2002, vol. 2, 967–970.Google Scholar
[7]Wang, F.; Suarez, A.; Rutledge, D.B.: Bifurcation analysis of stabilization circuits in an L-band LDMOS 60-W power amplifier. IEEE Microw. Wirel. Compon. Lett., 15 (10) (2005), 712714.Google Scholar
[8]Anakabe, A.; Collantes, J.M.; Portilla, J.; Mons, S.; Mallet, A.: Detecting and avoiding odd-mode parametric oscillations in microwave power amplifiers. Int. J. RF Microw. Comput.-Aided Eng., 15 (5) (2005), 469478.Google Scholar
[9]Elad, D.; Shaulsky, R.; Mezhebovsky, B.: A novel method for even odd parametric oscillation stability analysis of a microwave power amplifier, in IEEE MTT-S Int. Microwave Symp. Digest., June 2006, 1850–1854.Google Scholar
[10]Suarez, A.: Analysis and Design of Autonomous Microwave Circuits, Wiley, New York, 2009.Google Scholar
[11]Jugo, J.; Portilla, J.; Anakabe, A.; Suárez, A.; Collantes, J.M.: Closed-loop stability analysis of microwave amplifiers. Electron. Lett., 37 (4) (2001), 226228.CrossRefGoogle Scholar
[12]Collantes, J.M.; Otegi, N.; Anakabe, A.; Ayllon, N.; Mallet, A.; Soubercaze-Pun, G.: Montecarlo stability analysis of microwave amplifiers, in 12th IEEE Wamicon, Boston, USA, April 2011, 1–6.Google Scholar
[13]Anakabe, A.; Ayllon, N.; Collantes, J.M.; Mallet, A.; Soubercaze-Pun, G.; Narendra, K.: Automatic pole-zero identification for multivariable large-signal stability analysis of RF and microwave circuits, in 40th European Microwave Conference, Paris, France, September 2010, 477–480.Google Scholar
[14]Ayllon, N.; Collantes, J.M.; Anakabe, A.; Lizarraga, I.; Soubercaze-Pun, G.; Forestier, S.: Systematic approach to the stabilization of multitransistor circuits. IEEE Trans. Microw. Theory Tech., 59 (8) (2011), 20732082.Google Scholar