Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-16T17:53:47.644Z Has data issue: false hasContentIssue false

Indoor target localization using single marginal antenna with virtual radars support

Published online by Cambridge University Press:  24 July 2017

Ali H. Muqaibel
Affiliation:
Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
Abdi T. Abdalla
Affiliation:
Electronics and Telecommunications Engineering Department, University of Dar es Salaam, Dar es Salaam, Tanzania
Mohammad T. Alkhodary*
Affiliation:
Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
*
Corresponding author: M.T. Alkhodary Email: [email protected]

Abstract

In urban target localization, the presence of walls creates virtual radars (VRs), which can be exploited to aid in localization process. The fact that multipath changes with the radar locations, which are referred to as aspect dependence property, enable us to find a radar location, which reduces wall uncertainties. This paper proposes single-antenna target localization in an enclosed structure taking advantage of VRs. Using ultra-wideband signals, we can resolve the target returns and estimate the correct location by solving monostatic loci at real and VR locations. Simulation results show that the method can precisely and accurately localize the target for a wide range of timing errors.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Setlur, P.; Amin, M.; Ahmad, F.: Multipath Doppler signatures from targets moving behind walls, in 2010 IEEE Radar Conf., IEEE, 2010, 799803. doi: 10.1109/RADAR.2010.5494511.CrossRefGoogle Scholar
[2] Setlur, P.; Amin, M.; Ahmad, F.: Multipath model and exploitation in through-the-wall and urban radar sensing. IEEE Trans. Geosci. Remote Sens., 49 (2011), 40214034. doi: 10.1109/TGRS.2011.2128331.CrossRefGoogle Scholar
[3] Setlur, P.; Smith, G.E.; Ahmed, F.; Amin, M.G.: Target localization with a single sensor via multipath exploitation. IEEE Trans. Aerosp. Electron. Syst. 48 (3) (2012), 1996–2014. doi: 10.1109/TAES.2012.6237575.CrossRefGoogle Scholar
[4] Deiana, D.; Kossen, A.S.; Van Rossum, W.L.: Multipath exploitation in an urban environment using a MIMO surveillance radar, in IEEE 11th Radar Symp., Vilnius, Lithuania, 2010, 14.Google Scholar
[5] Leigsnering, M.; Ahmad, F.; Amin, M.; Abdelhak, Z.: Multipath exploitation in through-the-wall radar imaging using sparse reconstruction. IEEE Trans. Aerosp. Electron. Syst., 50 (2014), 920939.CrossRefGoogle Scholar
[6] Chakraborty, B.; Li, Y.; Zhang, J.J.; Trueblood, T.; Papandreou-Suppappola, A.; Morrell, D.: Multipath exploitation with adaptive waveform design for tracking in urban terrain. Acoust. Speech Signal Process., Dallas, TX, 2010, 38943897.Google Scholar
[7] Liu, K.: Range-based source localisation with pure reflector in presence of multipath propagation. Electron. Lett., 46 (2010), 957958.Google Scholar
[8] Smith, G.E.; Mobasseri, B.G.: Multipath exploitation for radar target classification, in 2012 IEEE Radar Conf., IEEE, Atlanta, GA, USA, 2012, 06230628. doi: 10.1109/RADAR.2012.6212215.CrossRefGoogle Scholar
[9] Smith, G.E.; Mobasseri, B.G.: Robust through-the-wall radar image classification using a target-model alignment procedure. IEEE Trans. Image Process., 21 (2012), 754767.CrossRefGoogle ScholarPubMed
[10] Setlur, P.; Alli, G.; Nuzzo, L.: Multipath exploitation in through-wall radar imaging via point spread functions. IEEE Trans. Image Process., 22 (2013), 45714586. doi: 10.1109/TIP.2013.2256916.CrossRefGoogle ScholarPubMed
[11] Amin, M.G.; Ahmad, F.: Compressive sensing for through-the-wall radar imaging. J. Electron. Imaging, 22 (2013), 030901. doi: 10.1117/1.JEI.22.3.030901.CrossRefGoogle Scholar
[12] Muqaibel, A.H.; Amin, M.G.; Ahmad, F.: Directional multipath exploitation for stationary target localization with a single-antenna, in Int. Radar Conf. Catch. Invis., Lille, France, 2014.CrossRefGoogle Scholar
[13] Ahmad, F.; Zhang, W.; Amin, M.G.: Three-dimensional wideband beamforming for imaging through a single wall. IEEE Geosci. Remote Sens. Lett., 5 (2008), 176179.CrossRefGoogle Scholar
[14] Yoon, Y-S.; Amin, M.: Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging. IEEE Trans. Geosci. Remote Sens., 47 (2009), 31923208. doi: 10.1109/TGRS.2009.2019728.CrossRefGoogle Scholar
[15] Tivive, F.; Amin, M.G.; Bouzerdoum, A.: Wall clutter mitigation based on eigen-analysis in through-the-wall radar imaging, in Proc. IEEE Work. DSP, Corfu, Greece, 2011, 18.CrossRefGoogle Scholar
[16] Lagunas, E.; Amin, M.G.; Ahmad, F.; Nájar, M.: Wall mitigation techniques for indoor sensing within the compressive sensing framework. IEEE Trans. Geosci. Remote Sens., 51 (2013), 891906.CrossRefGoogle Scholar
[17] Tivive, F.; Bouzerdoum, A.; Moeness, A.: A subspace projection approach for wall clutter mitigation in through-the-wall radar imaging. IEEE Trans. Geosci. Remote Sens., 53 (2015), 21082122.CrossRefGoogle Scholar