Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-04T19:09:28.875Z Has data issue: false hasContentIssue false

A highly efficient 3.5 GHz inverse class-F GaN HEMT power amplifier

Published online by Cambridge University Press:  11 June 2010

Paul Saad*
Affiliation:
Department of Microtechnology and Nanoscience, GigaHertz Centre, Chalmers University of Technology, 9 Kemivägen, 41296 Gothenburg, Sweden.
Christian Fager
Affiliation:
Department of Microtechnology and Nanoscience, GigaHertz Centre, Chalmers University of Technology, 9 Kemivägen, 41296 Gothenburg, Sweden.
Hossein Mashad Nemati
Affiliation:
Department of Microtechnology and Nanoscience, GigaHertz Centre, Chalmers University of Technology, 9 Kemivägen, 41296 Gothenburg, Sweden.
Haiying Cao
Affiliation:
Department of Microtechnology and Nanoscience, GigaHertz Centre, Chalmers University of Technology, 9 Kemivägen, 41296 Gothenburg, Sweden.
Herbert Zirath
Affiliation:
Department of Microtechnology and Nanoscience, GigaHertz Centre, Chalmers University of Technology, 9 Kemivägen, 41296 Gothenburg, Sweden.
Kristoffer Andersson
Affiliation:
Department of Microtechnology and Nanoscience, GigaHertz Centre, Chalmers University of Technology, 9 Kemivägen, 41296 Gothenburg, Sweden.
*
Corresponding author: P. Saad Email: [email protected]

Abstract

This paper presents the design and implementation of an inverse class-F power amplifier (PA) using a high power gallium nitride high electron mobility transistor (GaN HEMT). For a 3.5 GHz continuous wave signal, the measurement results show state-of-the-art power-added efficiency (PAE) of 78%, a drain efficiency of 82%, a gain of 12 dB, and an output power of 12 W. Moreover, over a 300 MHz bandwidth, the PAE and output power are maintained at 60% and 10 W, respectively. Linearized modulated measurements using 20 MHz bandwidth long-term evolution (LTE) signal with 11.5 dB peak-to-average ratio show that −42 dBc adjacent channel power ratio (ACLR) is achieved, with an average PAE of 30%, −47 dBc ACLR with an average PAE of 40% are obtained when using a WCDMA signal with 6.6 dB peak-to-average ratio (PAR).

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cripps, S.C.: RF Power Amplifiers for Wireless Communications, Artech House, Norwood, MA, 2006.Google Scholar
[2]Raab, F.H.: Class-F power amplifiers with maximally flat waveforms. IEEE Trans. Microw. Theory Tech., 45 (11) (1997), 20072012.CrossRefGoogle Scholar
[3]Pribble, W. et al. : Applications of SiC MESFETs and GaN HEMTs in power amplifier design, in IEEE MTT-S Int. Micro. Symp. Dig., vol. 3, 2002, 1819–1822.Google Scholar
[4]Nagy, W.; Brown, J.; Borges, R.; Singhal, S.: Linearity characteristics of microwave-power GaN HEMts. IEEE Trans. Microw. Theory Tech., 51 (2) (2003), 660664.CrossRefGoogle Scholar
[5]Inoue, A.; Ohta, A.; Goto, S.; Ishikawa, T.; Matsuda, Y.: The efficiency of class F and inverse class F amplifiers, in IEEE MTT-S Int. Micro. Symp. Dig., vol. 3, 2004, 1947–1950.Google Scholar
[6]Wei, C.J. et al. : Analysis and experimental waveform study on inverse class-F mode of microwave power FETs. IEEE Trans. Microw. Theory Tech., 2000, 525528.Google Scholar
[7]Goto, S. et al. : Effect of bias condition and input harmonic termination on high efficiency inverse class-F amplifiers, in Proc. 31st European Microwave Conf., 2001, 1–4.Google Scholar
[8]Woo, Y.Y.; Yang, Y.; Kim, B.: Analysis and experiments for high efficiency class-F and inverse class-F power amplifiers. IEEE Trans. Microw. Theory Tech., 54 (5) (2006), 19691974.Google Scholar
[9]Saad, P.; Nemati, H.; Thorsell, M.; Andersson, K.; Fager, C.: An inverse class-F GaN HEMT power amplifier with 78% PAE at 3.5 GHz, in Proc. 39th European Microwave Conf., 2009, 496–499.Google Scholar
[10]Bae, H.G., Negra, R., Boumaiza, S., Ghannouchi, F.: High-efficiency GaN class-E power amplifier with compact harmonic-suppression network, in Proc. 37th European Microwave Conf., 2007, 1093–1096.CrossRefGoogle Scholar
[11]Aflaki, P.; Negra, R.; Ghannouchi, F.: Design and implementation of an inverse class-F power amplifier with 79% efficiency by using a switch-based active device model, in Radio and Wireless Symp., 2008 IEEE, 2008, 423–426.Google Scholar
[12]Schmelzer, D.; Long, S.: A GaN HEMT class F amplifier at 2 GHz with > 80% PAE. IEEE J. Solid-State Circuits, 42 (10) (2007), 21302136.CrossRefGoogle Scholar
[13]Al Tanany, A.; Sayed, A.; Boeck, G.: A 2.14 GHz 50 Watt 60% power added efficiency GaN current mode Class D power amplifier, in Proc. 38th European Microwave Conf., 2008, 432–435.Google Scholar
[14]Lee, Y.-S.; Jeong, Y.-H.: A high-efficiency class-E GaN HEMT power amplifier for WCDMA applications. IEEE Microw. Wirel. Compon. Lett., 17 (8) (2007), 622624.CrossRefGoogle Scholar
[15]Choi, H.; Shim, S.; Jeong, Y.; Lim, J.; Kim, C.D.: A compact DGS load-network for highly efficient class-E power amplifier, in Proc. 39th European Microwave Conf., 2009, 492–495.Google Scholar
[16]Lee, M.-W.; Lee, Y.-S.; Jeong, Y.-H.: A high-efficiency GaN HEMT hybrid class-E power amplifier for 3.5 GHz WiMAX applications, in Proc. 38th European Microwave Conf., 2008, 436–439.Google Scholar
[17]Raab, F.: Class-E, Class-C, and Class-F power amplifiers based upon a finite number of harmonics. IEEE Trans. Microw. Theory Tech., 49 (8) (2001), 14621468.Google Scholar
[18]Negra, R.; Bachtold, W.: Lumped-element load-network design for class-E power amplifiers. IEEE Trans. Microw. Theory Tech., 54 (6) (2006), 26842690.CrossRefGoogle Scholar
[19]Negra, R.; Ghannouchi, F.; Bachtold, W.: Study and design optimization of multiharmonic transmission-line load networks for class-E and class-F K-Band MMIC power amplifiers. IEEE Trans. Microw. Theory Tech., 55 (6) (2007), 13901397.CrossRefGoogle Scholar
[20]Nemati, H.; Fager, C.; Thorsell, M.; Herbert, Z.: High-efficiency LDMOS power-amplifier design at 1 GHz using an optimized transistor model. IEEE Trans. Microw. Theory Tech., 57 (7) (2009), 16471654.Google Scholar
[21]Rollett, J.: Stability and power-gain invariants of linear two ports. IEEE Trans. Circuit Theory, 9 (1) (1962), 2932.Google Scholar
[22]Kim, J.; Konstantinou, K.: Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett., 37 (23) (2001), 14171418.CrossRefGoogle Scholar