Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T03:44:03.879Z Has data issue: false hasContentIssue false

High permeability and high permittivity heterostructures for the miniaturization of Radiofrequency components

Published online by Cambridge University Press:  07 January 2010

Evangéline Bènevent*
Affiliation:
CEA, LETI, MINATEC, F38054 Grenoble, France. Phone: +334.38.78.02.75; Fax: +334.38.78.21.27. SPINTEC, CEA, CNRS, UJF, INPG; CEA/INAC, F38054 Grenoble, France.
Kevin Garello
Affiliation:
CEA, LETI, MINATEC, F38054 Grenoble, France. Phone: +334.38.78.02.75; Fax: +334.38.78.21.27. SPINTEC, CEA, CNRS, UJF, INPG; CEA/INAC, F38054 Grenoble, France. XLIM, CNRS, F87060 Limoges, France.
Dominique Cros
Affiliation:
XLIM, CNRS, F87060 Limoges, France.
Bernard Viala
Affiliation:
CEA, LETI, MINATEC, F38054 Grenoble, France. Phone: +334.38.78.02.75; Fax: +334.38.78.21.27. SPINTEC, CEA, CNRS, UJF, INPG; CEA/INAC, F38054 Grenoble, France.
*
Corresponding author: E. Bènevent Email: [email protected]

Abstract

This paper discusses on the miniaturization of radiofrequency (RF) front-end components such as half-wavelength resonators based on new magneto-dielectric heterostructures combining high permeability (µ = 150–250) and high permittivity (ε = 18–150). Size reduction is evaluated by means of 2-cm-long coplanar waveguides realized with silicon technology and having a resonance frequency of about 3 GHz. The experimental results show a physical length reduction of 11.2% due to the dielectric contribution (ε = 18) and 14.8% by cumulating dielectric and magnetic effects (ε = 18 and µ = 150). These results are significant with respect to the moderate thickness of the preliminary material used here (only 150 nm). In a second part, a predictive model is proposed with µ and ε as variables. When adjusting the material properties in a realistic way (µ = 250 and ε = 150), the model predicts size reduction of ~50% for the same thickness. Larger values can be expected with increasing the film thickness.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Garello, K.; Viala, B.; Bènevent, E.: Magnetic–dielectric heterostructure thin film combining high permeability and high permittivity, in IEEE International Magnetics Conference 2009, Sacramento, CA, 2009.Google Scholar
[2]Lamy, Y.; Viala, B.: Combination of ultimate magnetization and ultrahigh uniaxial anisotropy in CoFe-exchange multilayers. J. Appl. Phys., 97 (10) (2005), 10F91010F913.CrossRefGoogle Scholar
[3]Guillian, J.; Tartavel, G.; Defay, E.; Ulmer, L.; Andre, B.; Baume, F.: Optimization of surface capacitance and leakage currents on ion beam sputtered SrTiO3-based MIM capacitors above IC technology. Integr. Ferroelectr., 67 (2004), 93101.CrossRefGoogle Scholar
[4]Heinrich, W.: Quasi-TEM description of MMIC coplanar lines including conductor-loss effects. IEEE Trans. Microwave Theory Tech., 41 (1) (1993), 4552.CrossRefGoogle Scholar
[5]Gilbert, T.L.: A Lagrangian formulation of gyromagnetic equation of the magnetic field. Phys. Rev., 10 (1955), 1243.Google Scholar
[6]Kittel, C.: On the theory of ferromagnetic resonance absorption. Phys. Rev., 73 (2) (1948), 155161.CrossRefGoogle Scholar
[7]Aharoni, A.: Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys., 83 (6) (1998), 34323434.CrossRefGoogle Scholar