Published online by Cambridge University Press: 14 October 2020
Proposed is a wideband, low profile, fully flexible, and all-textile-based slotted triangular antenna loaded with a 2 × 2 textile-inspired artificial magnetic conductor to be worn on the wrist. The integrated antenna design is designed to cover the frequency band from 3.1 to 6.5 GHz. The integrated design has two main resonances, where the first one is at 3.5 GHz, which can serve the WiMAX communication standard, while the second is at 5.8 GHz, which can serve the Industrial, Scientific and Medical (ISM)-band. The incorporated textile materials are composed of the conductive and dielectric fabrics that are realized by ShieldIt and Felt, respectively. When simulated against the human model wrist, the integrated antenna design displayed a realized gain of 6.71 dBi and radiation efficiency of 79.1%, at 3.5 GHz. Furthermore, at 5.8 GHz, it displayed a realized gain of 7.82 dBi and total efficiency performances of 66.1%. Moreover, it accomplished very low SAR levels within the antenna frequency band. Averaged over 1 g of tissue, it exhibited maximum SAR levels of 3.28 × 10−6 and 9.37 × 10−7 W/kg at 3.5 and 5.8 GHz, respectively. For the bent scenarios, the integrated antenna design displayed robustness when bent at an angle of 20 and 40°. Finally, measurement results are illustrated and analyzed. Based on the presented results, the suggested all-textile integrated antenna design might be designated for integration with the wristband to monitor the user health conditions through many possible frequency channels.