Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T21:33:48.376Z Has data issue: false hasContentIssue false

Four ports MIMO printed antenna with high isolation for UWB and X-band systems

Published online by Cambridge University Press:  21 April 2023

Ahmed A. Ibrahim*
Affiliation:
Communications and Electronics Engineering Dep., Minia University, El-Minia, Egypt
Amira Eltokhy
Affiliation:
Rapid Bio-Labs, Tallinn, Estonia
Ahmed Fawzy Daw
Affiliation:
Faculty of Engineering, Modern Science and Arts (MSA) University, Cairo, Egypt
*
Author for correspondence: Ahmed A. Ibrahim, E-mail: [email protected]

Abstract

In this work, a compact size 4 ports multiple input multiple output (MIMO) slot antenna with the connected ground for Ultra-Wide Band (UWB) and X band applications is introduced and discussed. The single antenna is a cross-shaped slot antenna in the ground plane and a 50 Ω microstrip line with a small L-stub is used to feed the antenna on the other side. The suggested MIMO antenna has four identical elements arranged to be orthogonal to each other to enhance the MIMO system performance. The antenna elements are connected with a small strip to compose the proposed connected ground antennas. The suggested MIMO antenna has an overall size of 47 mm × 47 mm. The antenna has tested and simulated bandwidth with S11 < −10 dB extended from 4– 14 GHz and has isolation greater than 20 dB between ports without utilizing the decoupling elements and with good consistency between results. The MIMO antenna has peak gain and efficiency, envelope correlation coefficient, diversity gain, and channel capacity loss of 5.6 dBi and 80%, <5 × 10–3, 10 dB, and <0.4 bit/s/Hz, respectively which prove that our antenna can be suggested for the UWB MIMO applications.

Type
Antenna Design, Modelling and Measurements
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dharmarajan, A, Kumar, P and Afullo, TJO (2022) A high gain UWB human face shaped MIMO microstrip printed antenna with high isolation. Multimedia Tools and Applications 81, 3484934862.10.1007/s11042-021-11827-7CrossRefGoogle Scholar
Singh, S and Verma, S (2022) Printed compact four-port wearable MIMO antennas for wideband wireless applications. International Journal of Microwave and Wireless Technologies, 17.Google Scholar
Reddy, GS, Kamma, A, Mishra, SK and Mukherjee, J (2014) Compact bluetooth/UWB dual-band planar antenna with quadruple band-notch characteristics. IEEE Antennas and Wireless Propagation Letters 13, 872875.10.1109/LAWP.2014.2320892CrossRefGoogle Scholar
Boutejdar, A, Ibrahim, AA and Burte, EP (2015) Novel microstrip antenna aims at UWB applications. Microwaves & RF Magazine 7, 814.Google Scholar
Dhasarathan, V, Sharma, M, Kapil, M, Vashist, PC, Patel, SK and Nguyen, TK (2020) Integrated bluetooth/LTE2600 superwideband monopole antenna with triple notched (WiMAX/WLAN/DSS) band characteristics for UWB/X/Ku band wireless network applications. Wireless Networks 26, 28452855.CrossRefGoogle Scholar
Deng, JY, Guo, LX and Liu, XL (2015) An ultrawideband MIMO antenna with a high isolation. IEEE Antennas and Wireless Propagation Letters 15, 182185.10.1109/LAWP.2015.2437713CrossRefGoogle Scholar
Ibrahim, AA and Ali, WA (2022) High isolation 4-element ACS-fed MIMO antenna with band notched feature for UWB communications. International Journal of Microwave and Wireless Technologies 14, 5464.10.1017/S175907872100009XCrossRefGoogle Scholar
Suriya, I and Anbazhagan, R (2019) Inverted-A based UWB MIMO antenna with triple-band notch and improved isolation for WBAN applications. AEU-International Journal of Electronics and Communications 99, 2533.Google Scholar
Aboelleil, H, Ibrahim, AA and Khalaf, AA (2021) A compact multiple-input multiple-output antenna with high isolation for wireless applications. Analog Integrated Circuits and Signal Processing 108, 1724.10.1007/s10470-020-01775-xCrossRefGoogle Scholar
Sipal, D, Abegaonkar, MP and Koul, SK (2017) Easily extendable compact planar UWB MIMO antenna array. IEEE Antennas and Wireless Propagation Letters 16, 23282331.10.1109/LAWP.2017.2717496CrossRefGoogle Scholar
Saad, AAR and Mohamed, HA (2019) Conceptual design of a compact four-element UWB MIMO slot antenna array. IET Microwaves, Antennas & Propagation 13, 208215.10.1049/iet-map.2018.5163CrossRefGoogle Scholar
Saad, AAR (2018) Approach for improving inter-element isolation of orthogonally polarised MIMO slot antenna over ultra-wide bandwidth. Electronics Letters 54, 10621064.10.1049/el.2018.5346CrossRefGoogle Scholar
Gangwar, D, Sharma, A, Kanaujia, BK, Singh, SP and Lay-Ekuakille, A (2019) Characterization and performance measurement of low RCS wideband circularly polarized MIMO antenna for microwave sensing applications. IEEE Transactions on Instrumentation and Measurement 69, 38473854.10.1109/TIM.2019.2936707CrossRefGoogle Scholar
Biswas, AK, Pattanayak, SS and Chakraborty, U (2020) Evaluation of dielectric properties of colored resin plastic button to design a small MIMO antenna. IEEE Transactions on Instrumentation and Measurement 69, 91709177.10.1109/TIM.2020.2999736CrossRefGoogle Scholar
Khan, MS, Capobianco, AD, Naqvi, A, Ijaz, B, Asif, S and Braaten, BD (2015) Planar, compact ultra-wideband polarisation diversity antenna array. IET Microwaves, Antennas & Propagation 9, 17611768.10.1049/iet-map.2015.0371CrossRefGoogle Scholar
Zhang, S, Lau, BK, Sunesson, A and He, S (2012) Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications. IEEE Transactions on Antennas and Propagation 60, 43724380.CrossRefGoogle Scholar
Zhang, S, Ying, Z, Xiong, J and He, S (2009) Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation. IEEE Antennas and Wireless Propagation Letters 8, 12791282.10.1109/LAWP.2009.2037027CrossRefGoogle Scholar
Ghosh, J, Ghosal, S, Mitra, D and Chaudhuri, SRB (2016) Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator. Progress In Electromagnetics Research Letters 59, 115122.10.2528/PIERL16012202CrossRefGoogle Scholar
Iqbal, A, Saraereh, OA, Ahmad, AW and Bashir, S (2017) Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna. IEEE Access 6, 27552759.10.1109/ACCESS.2017.2785232CrossRefGoogle Scholar
Khan, MS, Capobianco, AD, Najam, AI, Shoaib, I, Autizi, E and Shafique, MF (2014) Compact ultra-wideband diversity antenna with a floating parasitic digitated decoupling structure. IET Microwaves, Antennas & Propagation 8, 747753.10.1049/iet-map.2013.0672CrossRefGoogle Scholar
Ali, WA, Ibrahim, AA and Mohamed, HA (2019) Highly isolated two elements MIMO antenna with band-notched characteristics for UWB applications. In 2019 6th International Conference on Advanced Control Circuits and Systems (ACCS) & 2019 5th International Conference on New Paradigms in Electronics & Information Technology (PEIT) (pp. 77–81). IEEE.10.1109/ACCS-PEIT48329.2019.9062872CrossRefGoogle Scholar
Koziel, S, Bekasiewicz, A and Cheng, QS (2017) Conceptual design and automated optimisation of a novel compact UWB MIMO slot antenna. IET Microwaves, Antennas & Propagation 11, 11621168.10.1049/iet-map.2016.0703CrossRefGoogle Scholar
Srivastava, K, Kumar, A, Kanaujia, BK, Dwari, S and Kumar, S (2019) A CPW-fed UWB MIMO antenna with integrated GSM band and dual band notches. International Journal of RF and Microwave Computer-Aided Engineering 29, e21433.10.1002/mmce.21433CrossRefGoogle Scholar
Zhang, JY, Zhang, F and Tian, WP (2015) Compact 4-port ACS-fed UWB-MIMO antenna with shared radiators. Progress in Electromagnetics Research Letters 55, 8188.10.2528/PIERL15062304CrossRefGoogle Scholar
Wang, E, Wang, W, Tan, X, Wu, Y, Gao, J and Liu, Y (2020) A UWB MIMO slot antenna using defected ground structures for high isolation. International Journal of RF and Microwave Computer-Aided Engineering 30, e22155.CrossRefGoogle Scholar
Peng, H, Zhi, R, Yang, Q, Cai, J, Wan, Y and Liu, G (2021) Design of a MIMO antenna with high gain and enhanced isolation for WLAN applications. Electronics 10, 1659.10.3390/electronics10141659CrossRefGoogle Scholar
Ibrahim, AA and Ali, WA (2021) High gain, wideband and low mutual coupling AMC-based millimeter wave MIMO antenna for 5 G NR networks. AEU-International Journal of Electronics and Communications 142, 153990.Google Scholar
Rosengren, K and Kildal, PS (2005) Radiation efficiency, correlation, diversity gain and capacity of a six-monopole antenna array for a MIMO system: theory, simulation and measurement in reverberation chamber. IEE Proceedings-Microwaves, Antennas and Propagation 152, 716.10.1049/ip-map:20045031CrossRefGoogle Scholar
Shin, H and Lee, JH (2003) Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole. IEEE Transactions on Information Theory 49, 26362647.CrossRefGoogle Scholar
Ibrahim, AA, Ahmed, MI and Ahmed, M (2022) A systematic investigation of four ports MIMO antenna depending on flexible material for UWB networks. Scientific Reports 12, 116.CrossRefGoogle ScholarPubMed