Published online by Cambridge University Press: 01 September 2011
Multi-satellite missions, such as the next generation of METEOSAT geostationary satellites, require a ground station able to support an arbitrary number of satellites that can fly wherever within a pre-determined sky region, called control box. The use of high frequencies, around 26 GHz, imposes on the ground station high antenna gains to compensate for the noise temperature collected at those frequencies to obtain the specified G/T. Regardless of the narrow beamwidths that emerged from the adoption of high antenna gains, it is also required to operate with fixed (i.e. without any kind of tracking) antennas. This paper shows how all these specifications drive a new type of ground station with respect to current solutions. The proposed architecture is based on a multi-reflector system able to provide a set of interleaved beams, which generates an almost uniform coverage of the control box. The architecture is analyzed and designed, optimizing all the main antenna parameters, and presenting the analytical results.