No CrossRef data available.
Published online by Cambridge University Press: 07 October 2021
A compact four-element ultra-wideband (UWB) multiple-input–multiple-output (MIMO) antenna with dual polarization and dual-notched capabilities was developed and fabricated. The MIMO antenna is composed of four orthogonally placed half-cutting UWB antenna elements. This orthogonal placement improves the isolation. Furthermore, an L-shaped slot and a continuous bending slot are etched to realize the band-rejection function in the WiMAX and WLAN bands. The result shows that the antenna achieved operating bands of 2.9–16.5 GHz (140.2%, S11 < −10 dB), fully covering the UWB (3.1–10.6 GHz). The port isolation is greater than 23 dB in the frequency band of interest, excluding two rejected bands. Moreover, the MIMO antenna has excellent diversity performance, such as a low envelope correlation coefficient (<0.004), high diversity gain (approximately 10 dB), and good omnidirectional radiation characteristics.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.