Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T18:23:36.798Z Has data issue: false hasContentIssue false

Dielectric contrast measurements on biological substances with resonant microwave near-field sensors

Published online by Cambridge University Press:  10 May 2013

Nora Haase*
Affiliation:
Institut für Hochfrequenztechnik, Technische Universität Hamburg-Harburg, 21073 Hamburg, Germany. Phone:  +49 (0)40-42878-2225
Arne F. Jacob
Affiliation:
Institut für Hochfrequenztechnik, Technische Universität Hamburg-Harburg, 21073 Hamburg, Germany. Phone:  +49 (0)40-42878-2225
*
Corresponding author: Nora Haase Email: [email protected]

Abstract

Resonant substrate integrated near-field sensors are used for characterization of aqueous solutions at three different frequencies. In addition, Chinese hamster ovary (CHO) cells in a culture medium are characterized with the same sensors. Different concentrations as well as different vital states of cell suspensions are examined. The complex permittivity of the samples is evaluated using a linearized method based on perturbation theory. The permittivity differences between the measured cell suspensions are discussed. The resonant frequencies of the sensors are close to 3, 7, and 11 GHz, respectively.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Sterzer, F.: Microwave medical devices. IEEE Microw. Mag., 3 (2002), 6570.CrossRefGoogle Scholar
[2]Fear, E.C.; Stuchly, M.A.: Microwave detection of breast cancer. IEEE Trans. Microw. Theory Tech., 48 (2000), 18541863.Google Scholar
[3]Grenier, K.: et al. : New broadband and contact less RF/microfluidic sensor dedicated to bioengineering, in IEEE MTT-S Int. Microwave Symp. Digest, (MTT '09). 2009.Google Scholar
[4]Di Carlo, D.; Lee, L.P.: Dynamic single-cell analysis for quantitative biology. Anal. Chem., 78 (2006), 79187925.CrossRefGoogle ScholarPubMed
[5]Fu, A.Y.; Spence, C.; Scherer, A.; Arnold, F.H.; Quake, S.R.: A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol., 17 (1999), 11091111.Google Scholar
[6]Morgan, H.; Sun, T.; Holmes, D.; Gawad, S.; Green, N.G.: Single cell dielectric spectroscopy. J. Appl. Phys., 40 (2006), 6170.Google Scholar
[7]Lazebnik, M.: et al. : A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys. Med. Biol., 52 (2007), 60936115.Google Scholar
[8]Cho, Y.; Kim, H.S.; Frazier, A.B.; Chen, Z.G.; Shin, D.M.; Han, A.: Whole-cell impedance analysis for highly and poorly metastatic cancer cells. J. of Microelectromech. Syst., 18 (2009), 808817.Google Scholar
[9]Talanov, V.V.; Scherz, A.; Moreland, R.L.; Schwartz, A.R.: A near-field scanned microwave probe for spatially localized electrical metrology. Appl. Phys. Lett., 88 (2006), 134106–(p3).Google Scholar
[10]Ambrozkiewicz, M.; Jacob, A.F.: Substrate integrated resonant near-field sensor for material characterization, in IEEE MTT-S Int. Microwave Symp. Digest (MTT), 2010, 23–28 May 2010, 628631.Google Scholar
[11]Jia-Sheng Hong.: Compact folded-waveguide resonators. in IEEE MTT-S Int., Microw. Symp. Dig., 2004 vol. 1 (2004), 213216.Google Scholar
[12]Haase, N.; Jacob, A.F.: Characterization of biological substances using a substrate integrated microwave near-field sensor. 42nd European, Microwave Conf. (EuMC), 2012, October 29–November 1 2012, 432435.Google Scholar
[13]Kajfez, D.; Chebolu, S.; Abdul-Gaffoor, M.R.; Kishk, A.A.: Uncertainty analysis of the transmission-type measurement of Q-factor. IEEE Trans. Microw. Theory Tech., 47 (1999), 367371.Google Scholar
[14]Gao, C.; Tao, W.; Duewer, F.; Lu, Y.; Xiang, X.-D.: High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope. Appl Phys Lett., 71 (1997), 18721874.Google Scholar
[15]Stogryn, A.: Equations for calculating the dielectric constant of saline water. IEEE Trans. Microw. Theory Tech., 19 (1971), 733736.CrossRefGoogle Scholar
[16]Birch, J.R. (1976) United States Patent 4,038,139. High Wycombe, England.Google Scholar
[17]Kent, M.; Kress-Rogers, E.: The COST 90bis collaborative work on the dielectric properties of foods. In Physical properties of foods / 2. COST 90bis Final Seminar proceedings, Elsevier Applied Science, London, (1987), 371374.Google Scholar
[18]Kaatze, U.: Complex permittivity of water as a function of frequency and temperature. J. Chem. Eng. Data, 34 (1989), 371374.Google Scholar
[19]Pozar, D.M.: Microwave Engineering, 3rd ed.John Wiley & Sons, New York, Inc., 2005.Google Scholar
[20]Collin, R.E.: Foundations for Microwave Engineering. McGraw-Hill, New Jersey, Inc., 1966.Google Scholar
[21]Grenier, K.; Dubuc, D.; Poupot, M.; Fournie, J.-J.: Microwave signatures of alive B- lymphoma cells suspensions. in IEEE Topical Conf. on, Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS). 2011, 16–19 January 2011, 9598.Google Scholar
[22]Mazur, P.: Freezing of living cells: mechanisms and implications. Am. J. Physiol., 247 (1984) C125C142.Google Scholar
[23]Henle, K.J.; Dethlefsen, L.A.: Time-temperature relationships for heat-induced killing of mammalian cells. Ann. New York Acad. Sci., 335 (1980) 234253.Google Scholar
[24]Grenier, K.; Dubuc, D.; Poleni, P.-E.; Kumemura, M.; Toshiyoshi, H.; Fujii, T.; Fujita, H.: Resonant based microwave biosensor for biological cells discrimination. IEEE Radio and Wireless Symposium (RWS), 2010, 10–14 January 2010, 523, 526.Google Scholar