Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T06:12:37.806Z Has data issue: false hasContentIssue false

Compact multiband printed-IFA on electromagnetic band-gap structures for wireless applications

Published online by Cambridge University Press:  03 April 2013

Dalia M. Elsheakh*
Affiliation:
Microstrip Department, Electronics Research Institute, National Research Centre, Dokki, Giza, Egypt. Phone: +(202)33310513
Esmat A. Abdallah
Affiliation:
Microstrip Department, Electronics Research Institute, National Research Centre, Dokki, Giza, Egypt. Phone: +(202)33310513
*
Corresponding author: D. M. Elsheakh Email: [email protected]

Abstract

Fourth generation mobiles require multi-standard operating handsets with small physical size as well as increasing demand for higher data rates. Compact multi-band printed inverted-F antennas (IFA) for available wireless communications are proposed in this paper. New design of printed IFA based on uniplanar compact electromagnetic band-gap (EBG) structure concept is proposed. A printed-IFA with L-load shaped over an artificial ground plane is designed as the main antenna to cover most wireless applications such as GSM, LTE, UMTS, Bluetooth, Wimax, and WLAN. The multi-band is created by means of an EBG structure that is used as a ground plane. Different shapes of uniplanar EBG such as ring, split ring resonator, and spiral rather than mushroom-like structure are investigated. The proposed antenna is built on the uniplanar EBG ground plane with size of 35 × 45 mm2, which is suitable for most of the mobile devices.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Volakis, J.L.; Chih, C.; Fujimoto, K.: Small Antennas: Miniaturization Techniques and Applications. Mc-Graw Hill Companies, 2010.Google Scholar
[2]Anguera, J.; Sanz, I.; Mumbrú, J.; Puente, C.: Multi-band handset antenna with a parallel excitation of PIFA and slot radiators. IEEE Trans. Antennas Propag., 58 (2010), 348356.Google Scholar
[3]Cabedo, A.; Anguera, J.; Picher, C.; Ribó, M.; Puente, C.: Multi-band handset antenna combining a PIFA, slots, and ground plane modes. IEEE Trans. Antennas Propag., 57 (2009), 25262533.Google Scholar
[4]Bhatti, R.A.; Im, Y.T.; Park, S.O.: Compact PIFA for mobile terminals supporting multiple cellular and non-cellular standards. IEEE Trans. Antennas Propag., 57 (2009), 25342540.Google Scholar
[5]Chaimool, S.; Chung, K.L.; Akkaraekthalin, P.: Bandwidth and gain enhancement of microstrip patch antennas using reflective meta surface. IEICE Trans. Commun., 10 (2010), 24962503.CrossRefGoogle Scholar
[6]Anguera, J.; Puente, C.; Martínez, E.; Rozan, E.: The fractal Hilbert monopole: a two-dimensional wire. Microw. Opt. Technol. Lett., 36 (2003), 102104.Google Scholar
[7]Sievenpiper, D.; Zhang, L.; Jimenez Broas, R.; Alexopolous, N.; Yablonivitch, E.: High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech., 47 (1999), 20592074.Google Scholar
[8]Shafai, L.: Characterisitcs of printed ring antennas, in Proc. Symp. Antenna Technology and Applied Electromagnetics, Montreal, Canada, vol. 96, 1996, 379382.Google Scholar
[9]Anguera, J.; Boada, L.; Puente, C.; Borja, C.; Soler, J.: Miniature H-shaped microstrip patch antenna. IEEE Trans. Antennas Propag., 52 (2004), 983993.Google Scholar
[10]Wong, K.L.: Compact and Broad Band Microstrip Antennas. Wiley Series in Microwave and Optical Engineering, Chang, Kai, Series Editor, John Wiley & Sons, Apr 7, 2004 - Technology & Engineering – 344 pages, 2002.Google Scholar
[11]Yang, F.; Rahmat-Samii, Y.: Electromagnetic Band-Gap Structures in Antenna Engineering. The Cambridge RF and Microwave Engineering Series, Cambridge University Press, Cambridge, Mass, USA, 2008.Google Scholar
[12]Yang, F.; Rahmat-Samii, Y.: Curl antenna over electromagnetic band-gap surfaces: a low profiled design for CP application. In Proc. IEEE Antennas and Propagation Society Int. Symp., 3 (2001), 372375.Google Scholar
[13]Park, J.Y.; Chang, C.C.; Qian, Y.; Itoh, T.: An improved low profile cavity-backed slot antenna loaded with 2D UC-PBG reflector. in Proc. IEEE Antennas and Propagation Society Int. Symp., 2001, 194197.Google Scholar
[14]Yang, F.; Demire, V.; Elsherbeni, D.A.; Elsherbeni, A.Z.; Eldek, A.A.: Planar dipole antennas near the edge of an EBG ground plane for WLAN applications. IEEE Antennas and Propagation Society Int. Symp., 1A (2010), 750753.Google Scholar
[15]Elsheakh, D.M.; Elsadek, H.A.; Abdallah, E.A.; Elhenawy, H.M.; Iskander, M.F.: Ultra-wide bandwidth 2 × 2 microstrip patch array antenna by using electromagnetic band-gap structure (EBG). IEEE Trans. Antenna Propag., 59 (2011), 15281534.Google Scholar
[16]Yang, F.; Rahmat-Samii, Y.: Microstrip antennas integrated with electromagnetic band-gap (EBG) structures. A low mutual coupling design for array applications. IEEE Trans. Antennas Propag., 51 (2003), 29392949.Google Scholar
[17]Assimonis, S.D.; Yioultsis, V.; Antonopoulos, C.S.: Computational investigation and design of planar EBG structures for coupling reduction in antenna applications. IEEE Trans. Magn., 48 (2012), 771774.Google Scholar
[18]Fan, M.Y.; Feng, R.; Hu, Z.H., Zhang, X.X.; Hao, Q.: Advance in 2D-EBG research. J. Infrared Millim. Waves, 22 (2003), 883887.Google Scholar
[19]Abedin, M.F.; Azad, M.Z.; Ali, M.: Wideband smaller unit-cell planar EBG structures and their application. IEEE Antennas Wirel. Propag. Lett., 56 (2008), 274276.Google Scholar
[20]Yamamoto, M.; Nojima, K.T.: Leaf-shaped bowtie antenna backed by a periodic patch loaded grounded slab. in IEEE Int. Symp. on Antennas and Propagation, 2011, 622625.CrossRefGoogle Scholar
[21]Hadarig, R.C.; de Cos, M.E.; Las-Heras, F.: Microstrip patch antenna bandwidth enhancement using AMC/EBG structures. Int. J. Antennas Propag., (vol. 2012 article ID 843754) (2012), 16.Google Scholar
[22]Pirhadi, A.; Keshmiri, F.; Hakkak, M.; Tayarani, M.: Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS AS superstrate layer. Prog. Electromagn. Res., 70 (2007), 120.Google Scholar
[23]Duan, Z.; Qu, S.; Hou, Y.: Electrically small antenna inspired by split ring resonator. Prog. Electromagn. Res. Lett., 7 (2009), 4757.Google Scholar