Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T20:56:38.104Z Has data issue: false hasContentIssue false

Characterization of integrated antennas at millimeter-wave frequencies

Published online by Cambridge University Press:  14 October 2011

Yan Fu*
Affiliation:
IMEP-LAHC, MINATEC, 3 Parvis Louis Néel, 38016 Grenoble, France.
Laurent Dussopt
Affiliation:
CEA-LETI, MINATEC Campus, 17 rue des Martyrs, F 38054 Grenoble, France.
Tan Phu Vuong
Affiliation:
IMEP-LAHC, MINATEC, 3 Parvis Louis Néel, 38016 Grenoble, France.
Fabien Ndagijimana
Affiliation:
IMEP-LAHC, MINATEC, 3 Parvis Louis Néel, 38016 Grenoble, France.
*
Corresponding author: Yan Fu Email: [email protected]

Abstract

This paper presents two feeding techniques for the radiation characterization of integrated antennas at millimeter-wave frequencies. The first method involves feeding the antenna-under-test (AUT) with a radiofrequency (RF) probe. We compare the measurements obtained with a standard RF probe, an extended probe, and an extended probe with reversed connector orientation. We find that the reversed orientation probe produces the best results in terms of effective measurement angular sector and reduction of ripples due to diffraction. The second method involves feeding the AUT through a flexible transmission line. This method achieves a larger range of measurement angles, but still suffers from parasitic scattering likely due to the mounting bracket and still need further development.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Smulders, P.; Haibing, Y.; Akkermans, I.: On the design of low-cost 60-GHz radios for multigigabit-per-second transmission over short distances [Topics in Radio Communications]. IEEE Commun. Mag., 45 (2007), 4451.Google Scholar
[2]Ohata, K. et al. : 1.25 Gbps wireless Gigabit Ethernet link at 60 GHz-band, in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Philadelphia, 2003, 509512.Google Scholar
[3]Smulders, P.: Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions. IEEE Commun. Mag., 40 (2002), 140147.CrossRefGoogle Scholar
[4]Barakat, M.; Delaveaud, C.; Ndagijimana, F.: Performance of a 0.13 µm SOI integrated 60 GHz dipole antenna, in IEEE Antennas and Propagation Society Int. Symp., Honolulu, HI, 2007.Google Scholar
[5]Barakat, M.; Delaveaud, C.; Ndagijimana, F.: Circularly polarized antenna on SOI for the 60 GHz Band, in Proc. European Conf. Antennas and Propagation, EuCAP, Edinburgh, 2007, 16.Google Scholar
[6]Zwick, T.; Baks, C.; Pfeiffer, U.; Liu, D.; Gaucher, B.: Probe based MMW antenna measurement setup, in IEEE Antennas and Propagation Society Int. Symp., Monterey, CA, 2004.Google Scholar
[7]Van Caekenberghe, K. et al. : A 2–40 GHz probe station based setup for on-wafer antenna measurements. IEEE Trans. Antennas Propag., 56 (2008), 32413247.CrossRefGoogle Scholar
[8]Simons, R.; Lee, R.: On-wafer characterization of millimeter-wave antennas for wireless applications. IEEE Trans. Microw. Theory Tech., 47 (2002), 9296.Google Scholar
[9]Ranvier, S.; Kyrö, M.; Icheln, C.; Luxey, C.; Staraj, R.; Vainikainen, P.: Compact 3-D on-wafer radiation pattern measurement system for 60 GHz antennas. Microw. Opt. Technol. Lett., 51 (2009), 319324.Google Scholar
[10]Simons, R.; N.G.R. Center: Novel on-wafer radiation pattern measurement technique for MEMS actuator based reconfigurable patch antennas, Technical report NASA/TM2002-211816, NASA, 2002.Google Scholar
[11]Beer, S.; Adamiuk, G.; Zwick, T.: Design and probe based measurement of 77 GHz antennas for antenna in package applications, in Proc. 39th European Microwave Conf., 2009, 524527.Google Scholar
[12]Segura, N.; Montusclat, S.; Person, C.; Tedjini, S.; Gloria, D.: On-wafer radiation pattern measurements of integrated antennas on standard BiCMOS and glass processes for 40–80 GHz applications, in Proc. Int. Conf. Microelectronic Test Structures, ICMTS, Leuven, 2005, 107110.Google Scholar
[13]Titz, D.; Kyro, M.; Abdeljelil, F.B.; Luxey, C.; Jacquemod, G.; Vainikainen, P.: Design and measurement of a dipole-antenna on a 130 nm CMOS substrate for 60 GHz communications, in Proc. Int. Conf. Applied Electromagnetics and Communications, ICECom, Dubrovnik, 2010.Google Scholar
[14]Bo, P.; Yuan, L.; Ponchak, G.E.; Papapolymerou, J.; Tentzeris, M.M.: A 60-GHz CPW-Fed high-gain and broadband integrated horn antenna. IEEE Trans. Antennas Propag., 57 (2009), 10501056.Google Scholar
[15]Pilard, R.; Montusclat, S.; Gloria, D.; Le Pennec, F.; Person, C.: Dedicated measurement setup for millimetre-wave silicon integrated antennas: BiCMOS and CMOS high resistivity SOI process characterization, in Proc. European Conf. Antennas and Propagation, EuCAP, Berlin, 2009, 24472451.Google Scholar
[16]Lanteri, J. et al. : 60 GHz antennas in HTCC and glass technology, in Proc. European Conf. Antennas and Propagation, EuCAP, Barcelona, 2010, 14.Google Scholar
[17]Mohammadpour-Aghdam, K.; Brebels, S.; Enayati, A.; Faraji-Dana, R.; Vandenbosch, G.A.E.; DeRaedt, W.: RF probe influence study in millimeter-wave antenna pattern measurements. Int. J. RF Microw. Comput. Aided Eng., 21 (2011), 413420.Google Scholar
[18]Barakat, M.: Dispositifs radiofréquences millimetriques pour objets communicants de type smart dust. Ph.D. thesis, Joseph Fourier University, Grenoble, 2008.Google Scholar
[19]Yang, T.H.; Chen, C.F.; Huang, T.Y.; Wang, C.L.; Wu, R.B.: A 60 GHz LTCC transition between microstrip line and substrate integrated waveguide, in Proc. Asia-Pacific Microwave Conf., APMC, Suchou, 2005, 47.Google Scholar
[20]Marzolf, E.; Drissi, M.H.: Waveguide-fed planar antennas for millimeter waveband. Microw. Opt. Technol. Lett., 35 (2002), 7173.Google Scholar
[21]Hirokawa, J.; Ando, M.; Goto, N.: Waveguide-fed parallel plate slot array antenna. IEEE Trans. Antennas Propag., 40 (1992), 218223.Google Scholar