Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T10:38:25.438Z Has data issue: false hasContentIssue false

The application of high-resolution methods for DOA estimation using a linear antenna array

Published online by Cambridge University Press:  07 April 2014

Lotfi Osman*
Affiliation:
Faculty of Sciences of Tunis, UR “CSEHF”, University of Tunis El Manar, 2092 Tunis, Tunisia. Phone: +216 21105620
Imen Sfar
Affiliation:
Faculty of Sciences of Tunis, UR “CSEHF”, University of Tunis El Manar, 2092 Tunis, Tunisia. Phone: +216 21105620
Ali Gharsallah
Affiliation:
Faculty of Sciences of Tunis, UR “CSEHF”, University of Tunis El Manar, 2092 Tunis, Tunisia. Phone: +216 21105620
*
Corresponding author: L. Osman Email: [email protected]

Abstract

This paper presents results of direction of arrival (DOA) estimation using multiple signal classification (MUSIC), Root-MUSIC, and estimation of signal parameters via rotational invariance technique algorithms. As is well known, these algorithms are mainly based on the specific properties of the signal covariance matrix as well as the decomposition of the observation space into two subspaces, one for the signal and the other for the noise. Here, we are particularly interested in the quality of sources localization considering only the case of uncorrelated radio frequency signals impinging on an antenna array. A measurement system consisting of a linear array antenna and a five-port network applicable to a demodulator such as a receiver is used for the DOA estimation process. Co-simulations performed with the Advanced Device System and Matlab yielded interesting results not only on their performance but also on their limitation.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Godara, L.C.: Applications of antenna arrays to mobile communications. Proc. IEEE, 85 (1997), 1031–1060, and Part II. Proc. IEEE, 85 (1997), 1195–1244.CrossRefGoogle Scholar
[2]Liao, B.; Chan, S.C.: DOA estimation of coherent signals for uniform linear arrays with mutual coupling, in Symposium on Circuits and Systems (ISCAS), Brazil, 2011.CrossRefGoogle Scholar
[3]Abdallah, A.; Chahine, S.A.; Rammel, M.; Neveux, G.; Vaudon, P.; Campovecchio, M.: A smart antenna simulation for (DOA) estimating using MUSIC and ESPRIT algorithms, in 23rd National Radio Science Conf., Faculty of Electronic Engineering, Menoufya University, Egypt, 2006.CrossRefGoogle Scholar
[4]Arja, H.E.; Huyart, B.; Begaud, X.: Joint TOA/DOA measurements for UWB indoor propagation channel using MUSIC algorithm, in Proc. 2nd European Wireless Technology Conf., EuMA, Rome, Italy, 2009.Google Scholar
[5]Liberti, J.C.; Rappaport, T.S.: Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications, Prentice-Hall, New York, 1999.Google Scholar
[6]Wu, H.T.; Yang, J.F.; Chen, F.K.: Source number estimator using transformed Gerschgorin radii. IEEE Trans. signal Proc., 43 (1995), 13251333.Google Scholar
[7]Wax, M.; Kailath, T.: Determining the Number of Signals by Information Theoretic Criteria, Workshop on Spectral Estimation II, IEEE, ASSP, Florida, 1983.Google Scholar
[8]Wong, K.M.; Zhang, QI-TU.; Reilly, J.P.: On information theoretic criteria for determining the number of signals in high resolution array processing. IEEE Trans. Acoust. Speech Signal Process., 38 (1990), 19591971.CrossRefGoogle Scholar
[9]Akkar, S.; Harabi, F.; Gharsallah, A.: Directions of arrival estimation with planar antenna arrays in the presence of mutual coupling. Int. J. Electron., 100 (2013), 818836.CrossRefGoogle Scholar
[10]Hoi-Shun, L.; Hon Tat, H.; Mook Seng, L.: A note on the mutual-coupling problems in transmitting and receiving antenna arrays. IEEE Antennas Propag. Mag., 51 (2009), 171176.CrossRefGoogle Scholar
[11]Pisarenko, V.F.: The retrieval of harmonics from a covariance function. Geophys. J. R. Astron. Soc., 33 (1973), 347366.CrossRefGoogle Scholar
[12]Schmidt, R.O.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag., 34 (1986), 276280.CrossRefGoogle Scholar
[13]Xiong, J.; Zi Cheng, Du.: An improved fast Root-MUSIC algorithm for DOA estimation, in Int. Conf. Image Analysis and Signal Processing (IASP), Hangzhou, 2012.CrossRefGoogle Scholar
[14]Roy, R.; Paulraj, A. & Kailath, T.: ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Trans. Acoust. Speech Signal Process., 34 (1986), 13401342.CrossRefGoogle Scholar
[15]Trees, H.: Optimum Array Processing, Detection, Estimation and Modulation, Part IV. IEEE Trans, John Wiley and Sons, Inc., New York, 2002.Google Scholar
[16]Capon, J.: High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 57 (1969), 14081418.CrossRefGoogle Scholar
[17]Evans, J.E.; Johnson, J.R.; Sun, D.F.: High resolution angular spectrum estimation techniques for terrain scattering analysis and angle of arrival estimation, in 1st ASSP Workshop Spectral Estimation, Hamilton, Canada, 1981.Google Scholar
[18]Hoctor, R.T.; Kassam, S.A.: High resolution coherent source location using transmit/receive arrays. IEEE Transact. Image Process., 1 (1992), 88100.CrossRefGoogle ScholarPubMed
[19]Manikas, A.; Ratnarajah, T.; Jinsock, L.: Evaluation of superresolution array techniques as applied to coherent sources. Int. J. Electron., 82 (1997), 77106.CrossRefGoogle Scholar
[20]Swindlehurst, A.: Alternative algorithm for maximum likelihood DOA estimation and detection. IEE Proc. Radar Sonar Navig., 141 (1994), 293299.CrossRefGoogle Scholar
[21]Kundu, D.: Estimating the number of signals in the presence of white noise. J. Stat. Plan. Inference, 90 (2000), 5768.CrossRefGoogle Scholar
[22]Schmidt, R.O.: Multiple emitter location and signal parameter estimation, in Proc. RADC. Spectral Estimation Workshop, Rome NY, 1979.Google Scholar
[23]Bienvenu, G.; Kopp, L.: Optimality of high resolution array processing using the Eigensystem approach. IEEE Trans. Acoust. Speech Signal Proc., 31 (1983), 12351248.CrossRefGoogle Scholar
[24]Bakhar, Md.; Vani, R.M. & Hunagund, P.V.: Eigen structure based direction of arrival estimation algorithms for smart antenna systems. Int. J. Comput. Sci. Netw. Secur., 9, (2009), 96100.Google Scholar
[25]Khan, Z.I.; Kamal, Md.; Hamzah, N.; Othman, K.; Khan, N.I.: Analysis of performance for multiple signal classification (MUSIC) in estimating direction of arrival, in Int. RF and Microwave Conf. Proc., Kuala Lumpur, Malaysia, 2008.CrossRefGoogle Scholar
[26]Barabell, A.: Improving the resolution performance of eigenstructure-based direction-finding algorithms, in Proc. ICASSP, Boston, MA, USA, 1983.Google Scholar
[27]Shan, T.J.; Wax, M.; Kailath, T.: On spatial smoothing for direction-of-arrival estimation of coherent signals, in Proc. Int. Multiconf. Engineers and Computer Scientists, Hong Kong, 2008.Google Scholar
[28]Akkar, S.; Gharsallah, A.: Reactance domains unitary MUSIC algorithms based on real-valued orthogonal decomposition for electronically steerable parasitic array radiator antennas. IET Microw. Antennas Propag., 6 (2012), 223230.CrossRefGoogle Scholar
[29]Hwang, H.K.; Aliyazicioglu, Z.; Grice, M.; Yakovlev, A.: Direction of arrival estimation using a Root-MUSIC algorithm, in Proc. Int. Multiconf. Engineers and Computer Scientists, Hong Kong, 2008.CrossRefGoogle Scholar
[30]Wang, P.; Zhang, G.; Xiong, J.; Xue, C.; Zhang, W.: Root-MUSIC algorithm with real-valued Eigende-composition for acoustic vector sensor array, in First Int. Conf. Pervasive Computing, Signal Processing and Applications, China, 2010.CrossRefGoogle Scholar
[31]Roy, R.; Kailath, T.: ESPRIT-Estimation of signal parameters via rotational invariance techniques. IEEE Transact. Acoust. Speech Signal Process., 37 (1989), 984995.CrossRefGoogle Scholar
[32]Zhou, L.; Huang, D.; Duan, H.; Chen, Y.: A modified ESPRIT algorithm based on a new SVD method for coherent signals, in IEEE Int. Conf. Information and Automation, Shenzhen, 2011.Google Scholar
[33]Stoica, P.; Söderström, T.: Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies. IEEE Trans. Signal Process., 39 (1991), 18361847.CrossRefGoogle Scholar
[34]Eriksson, A.; Stoica, P.; Söderström, T.: Second-order properties of MUSIC and ESPRIT estimates of sinusoidal frequencies in high SNR scenarios. IEE Proc. Radar Sonar Navig., 140 (1993), 266272.Google Scholar
[35]AI-Ardi, E.M.; Shuhair, R.M.; AI-Mualla, M.E.: Investigation of high-resolution DOA estimation algorithms for optimal performance of smart antenna systems, in 4th Int. Conf. 3G Mobile Communication Technologies (Conf. Publ. No. 494), 2003.CrossRefGoogle Scholar
[36]Hua, Y.; Sarkar, T.K.: On SVD for estimating generalized eigenvalues of singular matrix pencil in noise. IEEE Trans. Signal Process., 39 (1991), 892900.CrossRefGoogle Scholar
[37]Sfar, I.; Osman, L.; Gharsallah, A.: A five-port reflectometer for communication receiver applications, in 8th Int. Multi-Conf. Systems, Signals and Devices, Sousse, Tunisia, 2011.CrossRefGoogle Scholar
[38]Kim, I.I.; Park, G.T.; Kyung Lee, K.: Computationally efficient high resolution DOA estimation algorithm. Electron. Lett., 37 (2001), 795796.CrossRefGoogle Scholar