Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T03:42:35.175Z Has data issue: false hasContentIssue false

Annular ring microstrip patch antenna with finite ground plane for ultra-wideband applications

Published online by Cambridge University Press:  24 April 2014

Sanyog Rawat*
Affiliation:
Amity School of Engineering and Technology, Amity University Rajasthan, Jaipur 303002, India. Phone: +91-9414069888
Kamalesh Kumar Sharma
Affiliation:
Malaviya National Institute of Technology, Jaipur 302017, India
*
Corresponding author: S. Rawat Email: [email protected]

Abstract

A design of annular ring microstrip antenna with finite ground structure is proposed in this paper. The proposed geometry offers impedance bandwidth of 2.362 GHz and has stable radiation patterns for all resonant frequencies in the operational band. It is also found that shape and dimension of the finite ground plane is a key factor in improving the bandwidth of the proposed geometry. The geometry is low profile and has simple structure, therefore can be used for lower band of ultra-wideband applications.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Garg, R.; Bhartia, P.; Bahl, I.; Ittipiboon, A.: Microstrip Antenna Design Handbook, Artech House, New York, 2001.Google Scholar
[2]Wong, K.L.: Compact and Broadband Microstrip Antennas, Wiley, New York, 2003.Google Scholar
[3]Schantz, H.G.: A brief history of UWB antennas, In Proc. IEEE Conf. on Ultra Wideband Systems and Technologies, vol. 16, 2003, 209–213.Google Scholar
[4]Ray, K.P.; Ranga, Y.; Gabhale, P.: Printed square monopole antenna with semicircular base for ultra-wide bandwidth. Electron. Lett., 43 (2007), 1314.CrossRefGoogle Scholar
[5]Federal Communications Commission, FCC Report and Order for Part 15 acceptance of ultra wideband (UWB) systems from 3.1–10.6 GHz, Washington, DC, (2002) 110.Google Scholar
[6]Denidni, T.A.; Rao, Q.: Patch loading circular aperture slot antennas for broadband WLAN applications. Wirel. Pers. Commun., 33 (2005), 121129.CrossRefGoogle Scholar
[7]Sarin, V.P.; Nishamol, M.S.; Tony, D.; Aanandan, C.K.; Mohanan, P.; Vasudevan, K.: A broadband L-strip fed printed microstrip antenna. IEEE Trans. Antenna Propag., 59 (2011), 281284.CrossRefGoogle Scholar
[8]Cappelletti, G.; Caratelli, D.; Cicchetti, R.; Simeoni, M.: A low-profile printed drop-shaped dipole antenna for wideband wireless applications. IEEE Trans. Antennas Propag., 59 (2011), 35263535.CrossRefGoogle Scholar
[9]Rawat, S.; Sharma, K.K.: Stacked configuration of rectangular and hexagonal patches with shorting pin for circularly polarized wideband performance. Cent. Eur. J. Eng., 4 (2013), 2026.Google Scholar
[10]Sadat, S.; Fardis, M.; Geran, F.; Dadashzadeh, G.: A compact microstrip square-ring antenna for UWB applications. Prog. Electromagn. Res., 67 (2007), 173179.CrossRefGoogle Scholar
[11]Moeikham, P.; Akkaraekthalin, P.: A compact ultrawide band monopole antenna with tapered CPW feed and slot stubs, in Proc. 8th Int. Conf. on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Khon Kaen, Thailand, 2011, 180–183.CrossRefGoogle Scholar
[12]Kang, C.H.; Wu, S.J.; Tarng, J.H.: A novel folded UWB antenna for wireless body area network. IEEE Trans. Antennas Propag., 60 (2) (2012), 11391142.CrossRefGoogle Scholar
[13]Shekhawat, S.; Sekra, P.; Saxena, V.K.; Saini, J.S.; Bhatnagar, D.: Circular microstrip antenna with off-centered Y-slot. Int. J. RF Microw. Comput. Aided Eng., 21 (2011), 407411.CrossRefGoogle Scholar
[14]Garima; Bhatnagar, D.; Saini, J.S.; Saxena, V.K.; Joshi, L.M.: Design of broadband circular patch microstrip antenna with diamond shape slot. Indian J. Radio Space Phys., 40 (2011), 275281.Google Scholar
[15]Tiang, J.J.; Islam, M.T.; Misran, N.; Mandeep, J.S.: Circular microstrip slot antenna for dual-frequency RFID application. Prog. Electromagn. Res., 120 (2011), 499512.CrossRefGoogle Scholar
[16]Chew, W.C.: A broad-band annular-ring microstrip antenna. IEEE Trans. Antennas Propag., AP-30 (5) (1982), 918992.CrossRefGoogle Scholar
[17]Xi, L.; Lin, Y.; Min, W.: A novel design of multi-layer wideband shorted annular stacked patch antenna for GNSS application with dual layer striplines feed. J. Electromagn. Waves Appl., 27 (2013), 11871195.CrossRefGoogle Scholar
[18]Ding, K.; Yu, T.B.; Zhang, Q.: A compact stacked circularly polarised annular ring microstrip antenna for GPS applications. Prog. Electromagn. Res. Lett., 40 (2013), 171179.CrossRefGoogle Scholar
[19]Chen, X.; Li, X.; Fu, G.; Yan, Y.l.: CP higher-order mode annular-ring microstrip antenna for mobile satellite communication, in Int. Conf. on Microwave and Millimeter Wave Technology, vol. 3, 2012, 1–4.CrossRefGoogle Scholar
[20]Guha, D.; Biswas, M.; Antar, Y.M.M.: Microstrip patch antenna with defected ground structure for cross polarization suppression. IEEE Antennas Wirel. Propag. Lett., 4 (2005), 455458.CrossRefGoogle Scholar
[21]Weng, L.H.; Guo, Y.C.; Shi, X.W.; Chen, X.Q.: An overview on defected ground structure. Prog. Electromagn. Res. B, 7 (2008), 173189.CrossRefGoogle Scholar
[22]Sarkar, D.; Saurav, K.; Srivastava, K.V.: Design of a novel dual-band microstrip patch antenna for WLAN/WiMAX applications using complementary split ring resonators and partially defected ground structure, in Progress in Electromagnetics Research Symp. Proc., Taipei, 2013, 821–825.Google Scholar
[23]Kandwal, A.; Sharma, R.; Khah, S.K.: Bandwidth enhancement using Z-shaped defected ground structure for a microstrip antenna. Microw. Opt. Technol. Lett., 55 (10) (2013), 22512254.CrossRefGoogle Scholar