Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T19:32:18.808Z Has data issue: false hasContentIssue false

Analysis and design of a high-gain 100–180-GHz differential power amplifier in 130 nm SiGe BiCMOS

Published online by Cambridge University Press:  10 February 2017

Faisal Ahmed*
Affiliation:
Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria. Phone: +43 732 2468 6409
Muhammad Furqan
Affiliation:
Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria. Phone: +43 732 2468 6409
Klaus Aufinger
Affiliation:
Infineon Technologies, Am Campeon, 85579 Neubiberg, Germany
Andreas Stelzer
Affiliation:
Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria. Phone: +43 732 2468 6409
*
Corresponding author: F. Ahmed Email: [email protected]

Abstract

This paper presents the design and measurement results of a high-gain D-band broadband power amplifier (PA) implemented in a 130 nm SiGe BiCMOS technology. The topology of the PA is based on four differential cascode stages with interstage matching networks. A detailed analysis of the frequency behavior of the transimpedance-gain of the common-base stage of the cascode is presented by means of small-signal equivalent circuits, when the proposed four-reactance wideband matching network is used for output matching to the subsequent stage. The effect of the size of the active devices, in achieving a desired gain, bandwidth, and output power, is investigated. The fabricated D-band amplifier is characterized on-wafer demonstrating a peak differential gain and output power of about 25 dB and 11 dBm, respectively, while utilizing a DC power of 262 mW from a 2.7 V supply. The 3-dB small-signal bandwidth of the PA spans from 100 to 180 GHz (limited by the measurement setup), making it the first SiGe-based PA to cover the entire D-band frequency range. The PA achieves a state-of-the-art differential gain-bandwidth product of around 1.4 THz and the highest GBW/PDC ratio of 5.2 GHz/mW among all D-Band Si-based PAs.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Deal, W.R. et al. Low Noise Amplification at 0.67 THz Using 30 nm InP HEMTs. IEEE Microw. Wireless Compon. Lett., 21 (2) (2011), 368370.Google Scholar
[2] Urteaga, M.; Pierson, R.; Rowell, P.; Jain, V.; Lobisser, E.; Rodwell, M.J.W.: 130 nm InP DHBTs with f T > 0.52 THz and f max > 1.1 THz, in 69th Annual Device Research Conf. DRC, 2011, 281282.+0.52+THz+and+f+max+>+1.1+THz,+in+69th+Annual+Device+Research+Conf.+DRC,+2011,+281–282.>Google Scholar
[3] Furqan, M.; Ahmed, F.; Feger, R.; Aufinger, K.; Stelzer, A.: A 122-GHz system-in-package radar sensor with BPSK modulator in a 130-nm SiGe BiCMOS Technology, IEEE Eur. Microwave Conf., London, UK, 2016.Google Scholar
[4] Rebeiz, G.M. et al. Millimeter-wave large-scale phased-arrays for 5 G systems, in Proc. IEEE Int. Microwave Symp., Phoenix, AZ, 2015.CrossRefGoogle Scholar
[5] Böck, J. et al. SiGe HBT and BiCMOS process integration optimization within the DOTSEVEN project, in Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Boston, 2015.Google Scholar
[6] Schröter, M. et al. SiGE HBT technology: future trends and TCAD-based roadmap, in Proc. of the IEEE, 2016.Google Scholar
[7] Schröter, M.: The EU Dotseven project: Overview and results, in Bipolar/BiCMOS Circuits and Technol. Meeting (BCTM), New Brunswick, NJ, 2016.Google Scholar
[8] Heinemann, B. et al. SiGe HBT with fT/fmax of 505 GHz/720 GHz, in IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2016.Google Scholar
[9] Hajimiri, A.: Distributed integrated circuits: an alternative approach to high-frequency design. IEEE Commun. Mag., 40 (2) (2002), 168173.Google Scholar
[10] Heydari, P.: Distributed integrated circuits for broadband communications: a DL talk at SSCS-Orage county in May. IEEE Solid-State Circuits Mag., 6 (3) (2014), 7880.Google Scholar
[11] Sangwoo, Y.; Lee, I.; Urteaga, M.; Kim, M.; Sanggeun, J.: A fully-integrated 40–222 GHz InP HBT distributed amplifier. IEEE Microw. Wireless Compon. Lett., 24 (7) (2014), 460462.Google Scholar
[12] Pahl, P. et al. A 50 to 146 GHz power amplifier based on magneteic transformers and distributed gain cells. IEEE Microw. Wireless Compon. Lett., 25 (9) (2015), 615617.Google Scholar
[13] Eriksson, K.; Darwazeh, I.; Zirath, H.: InP DHBT distributed amplifiers with up to 235-GHz bandwidth. IEEE Trans. Microw. Theory Tech., 63 (4) (2015), 13341341.CrossRefGoogle Scholar
[14] Fritsche, D.; Tretter, G.; Carta, C.; Ellinger, F.: A trimmable cascaded distributed amplifier with 1.6 THz gain-bandwidth product. IEEE Trans. THz. Sci. Technol., 5 (6) (2015), 10941096.CrossRefGoogle Scholar
[15] Hsiao, Y.; Tsai, Z.; Liao, H.; Kao, J.; Wang, H.: Millimeter-wave CMOS power amplifiers with high output power and wideband performances. IEEE Trans. Microw. Theory Tech., 61 (12) (2013), 45204533.Google Scholar
[16] Furqan, M.; Ahmed, F.; Rücker, H.; Stelzer, A.: A 140–180-GHz broadband amplifier with 7 dBm OP1dB, in Proc. IEEE CSCIS, New Orleans, LA, USA, Oct 2015, 14.Google Scholar
[17] Ahmed, F.; Furqan, M.; Aufinger, K.; Stelzer, A.: A SiGe-based broadband 100–180-GHz differential power amplifier with 11 dBm peak output power and >1.3 THz GBW, in IEEE Eur. Microwave Integrated Circuits Conf., London, UK, 2016.1.3+THz+GBW,+in+IEEE+Eur.+Microwave+Integrated+Circuits+Conf.,+London,+UK,+2016.>Google Scholar
[18] Ahmed, F.; Furqan, M.; Aufinger, K.; Stelzer, A.: Compact broadband amplifiers with up to 105 GHz bandwidth in SiGe BiCMOS, in Proc. IEEE Radio Frequency Integrated Circuits Conf., Phoenix, AZ, USA, 2015, 36.Google Scholar
[19] Costa, D.; Liu, W.U.; Harris, J.S.: Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit. IEEE Trans. Electron Devices, 38 (9) (1991), 20182024.CrossRefGoogle Scholar
[20] Voinigescu, S.P. et al. A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design. IEEE J. Solid State Circuits, 32 (9) (1997), 14301439.CrossRefGoogle Scholar
[21] Liu, G.; Schuhmacher, H.: Broadband millimeter-wave LNAs (47–77 GHz and 70–140 GHz) using a T-type matching topology. IEEE J. Solid State Circuits, 48 (9) (2013), 20222029.Google Scholar
[22] Ahmed, F.; Furqan, M.; Stelzer, A.: A 200–325 GHz wideband, low-loss Marchand balun in SiGe BiCMOS technology, in IEEE Eur. Microwave Conf., 2015, 4043.Google Scholar
[23] Sarmah, N.; Heinemann, B.; Pfeiffer, U.: A 135–170 GHz power amplifier in an advanced SiGe HBT technology, in Proc. IEEE Radio Frequency Integrated Circuits Conf., Seattle, WA, USA, June 2013, 287290.Google Scholar
[24] Lin, H.; Rebeiz, G.M.: A 110–134-GHz SiGe amplifier with peak output power of 100–120 mW. IEEE Trans. Microw. Theory Tech., 62 (12) (2014), 29903000.Google Scholar
[25] Al-Eryani, J. et al. A 162 GHz power amplifier with 14 dBm output power, in Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), New Brunswick, NJ, 2016.Google Scholar
[26] Daneshgar, S.; Buckwalter, J.F.: A 22 dBm, 0.6 mm2 D-band SiGe HBT power amplifier using series power combining sub-quarter-wavelength baluns, in Proc. IEEE CSICS, New Orleans, LA, USA, Oct 2015, 14.CrossRefGoogle Scholar