Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T11:26:13.097Z Has data issue: false hasContentIssue false

An L-band SiGe HBT differential amplifier with frequency and rejection-level tunable, multiple stopband

Published online by Cambridge University Press:  22 June 2009

Masaki Shirata
Affiliation:
Department of Electrical and Electronic Engineering, Shonan Institute of Technology, 1-1-25 Tsujido-Nishikaigan, Fujisawa, Kanagawa 251-8511Japan. Phone & Fax: +81-466-30-0185.
Toshio Shinohara
Affiliation:
Department of Electrical and Electronic Engineering, Shonan Institute of Technology, 1-1-25 Tsujido-Nishikaigan, Fujisawa, Kanagawa 251-8511Japan. Phone & Fax: +81-466-30-0185.
Minoru Sato
Affiliation:
Department of Electrical and Electronic Engineering, Shonan Institute of Technology, 1-1-25 Tsujido-Nishikaigan, Fujisawa, Kanagawa 251-8511Japan. Phone & Fax: +81-466-30-0185.
Yasushi Itoh*
Affiliation:
Department of Electrical and Electronic Engineering, Shonan Institute of Technology, 1-1-25 Tsujido-Nishikaigan, Fujisawa, Kanagawa 251-8511Japan. Phone & Fax: +81-466-30-0185.
*
Corresponding author: Y. Itoh E-mail: [email protected]

Abstract

An L-band frequency and rejection-level tunable SiGe HBT differential amplifier with dual stopband is presented. To achieve frequency and rejection-level tunable performance, dual LCR-tank circuit with an active load is incorporated into the design of the series feedback loops of the differential amplifier. The active load consists of a varactor diode represented as a variable C and a common-emitter transistor represented as a variable R. The frequency and rejection level can be tuned independently by controlling a cathode bias voltage of the varactor diode or a base bias voltage of the transistor. The implemented 0.35 μm SiGe HBT amplifier with dual stopband demonstrates a frequency tuning of 0.53–1.16 GHz and a rejection-level variation up to 9.5 dB. The input and output return losses are better than 17.5 and 11 dB over 0.2–1.5 GHz, respectively. The measured P1dB is+3 dBm and IIP3 is 0 dBm with Vcc = 6 V and Ic = 8 mA.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]McCune, E.: High-efficiency, multi-mode, multi-band terminal power amplifiers. IEEE Microwave Mag., 3 (2005), 4455.CrossRefGoogle Scholar
[2]Banbury, D.; Fayyaz, N.; Safavi-Naeini, S.; Nikneshan, S.: A CMOS 5.5/2.4 GHz Dual-band Smart-antenna Transceiver with a Novel RF dual-band phase shifter for WLAN 802.11a/b/g. IEEE Radio Frequency Integr. Circuit Symp. Dig. (2004), 157160.Google Scholar
[3]Hossein, S.; Lavasani, M.; Chaudhuri, B.; Kiaei, S.: A pseudo-concurrent 0.18 µm multi-band CMOS LNA. IEEE MTT-S Dig. (2003), 181184.Google Scholar
[4]Magnusson, H.; Olsson, H.: Multiband multi-standard transmitter using a compact power amplifier driver. IEEE Radio Frequency Integr. Circuit Symp. Dig. (2005), 491494.Google Scholar
[5]Raghavan, A.; Gebara, E.; Tentzeris, M.; Laskar, J.: An active interference canceller for multistandard collocated radio. IEEE MTT-S Dig. (2005), 723726.Google Scholar
[6]Chen, W.; Chang, S.; Huang, G.; Jean, Y.; Yeh, T.: A Ku-band interference-rejection CMOS low-noise amplifier using current-reused stacked common-gate topology. IEEE Microwave Wirel. Compon. Lett., 17 (2007), 718720.CrossRefGoogle Scholar
[7]Nguyen, T.; Oh, N.; Cha, C.; Oh, Y.; Ihm, G.; Lee, S.: Image-rejection CMOS low-noise amplifier design optimization techniques. IEEE Trans. Microwave Theory Tech., 53 (2005), 538545.CrossRefGoogle Scholar
[8]Zhang, S.; Madie, J.; Bretchko, P.; Makoro, J.; Shumovich, R.; McMorrow, R.: A novel power-amplifier module for quad-band wireless handset applications. IEEE Trans. Microwave Theory Tech., 51 (2003), 22032310.CrossRefGoogle Scholar
[9]Hashemi, H.; Hajimiri, A.: Concurrent multiband low-noise amplifiers – theory, design, and applications. IEEE Trans. Microwave Theory Tech., 50 (2002), 288301.CrossRefGoogle Scholar
[10]Nakajima, H.; Muraguchi, M.: Dual-frequency matching technique and its application to an octave-band (30–60 GHz) MMIC amplifier. IEICE Trans. Electron., E80-C (1997), 16141621.Google Scholar
[11]Lin, Y.; Lu, S.: A 2.4/3.5/4.9/5.2/5.7-GHz concurrent multiband low noise amplifier using InGaP/GaAs HBT technology. IEEE Microwave Wirel. Compon. Lett., 14 (2004), 463465.Google Scholar
[12]Itoh, Y.; Shinohara, T.; Shirata, M.; Sakamoto, K.: Eightfold-band differential SiGe HBT amplifier using stacked LC-tank circuits, in Proc. Asia-Pacific Microwave Conf., (2008), A147.Google Scholar
[13]Jachowski, D.: Compact, frequency-agile, absorptive bandstop filters. IEEE MTT-S Dig. (2005), 513516.Google Scholar
[14]Itoh, Y.: L-band SiGe HBT differential amplifiers with multiple bandpass or bandstop performance using stacked parallel-resonant circuits. Contemp. Eng. Sci., 1 (2008), 127138.Google Scholar
[15]Shirata, M.; Shinohara, T.; Sato, M.; Itoh, Y.: An L-band SiGe HBT differential amplifier with frequency-tunable and multiple stopbands. Proc. EuMA (2008), 151154.Google Scholar
[16]Gray, P.; Hurst, P.; Lewis, S.; Meyer, R.: Analysis and Design of Analog Integrated Circuits, John Wiley & Sons, USA Inc., 2001.Google Scholar