Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T20:00:22.811Z Has data issue: false hasContentIssue false

An 850 nm SiGe/Si HPT with a 4.12 GHz maximum optical transition frequency and 0.805A/W responsivity

Published online by Cambridge University Press:  22 October 2015

Zerihun Gedeb Tegegne*
Affiliation:
Université Paris-Est, ESYCOM (EA2552), ESIEE-Paris, UPEM, Le CNAM, 93162 Noisy-le-Grand, France. Phone: +33 145 926 699
Carlos Viana
Affiliation:
Université Paris-Est, ESYCOM (EA2552), ESIEE-Paris, UPEM, Le CNAM, 93162 Noisy-le-Grand, France. Phone: +33 145 926 699
Marc D. Rosales
Affiliation:
Université Paris-Est, ESYCOM (EA2552), ESIEE-Paris, UPEM, Le CNAM, 93162 Noisy-le-Grand, France. Phone: +33 145 926 699 University of the Philippines, Diliman, Philippines
Julien Schiellein
Affiliation:
Université Paris-Est, ESYCOM (EA2552), ESIEE-Paris, UPEM, Le CNAM, 93162 Noisy-le-Grand, France. Phone: +33 145 926 699
Jean-Luc Polleux
Affiliation:
Université Paris-Est, ESYCOM (EA2552), ESIEE-Paris, UPEM, Le CNAM, 93162 Noisy-le-Grand, France. Phone: +33 145 926 699
Marjorie Grzeskowiak
Affiliation:
Université Paris-Est, ESYCOM (EA2552), ESIEE-Paris, UPEM, Le CNAM, 93162 Noisy-le-Grand, France. Phone: +33 145 926 699
Elodie Richalot
Affiliation:
Université Paris-Est, ESYCOM (EA2552), ESIEE-Paris, UPEM, Le CNAM, 93162 Noisy-le-Grand, France. Phone: +33 145 926 699
Catherine Algani
Affiliation:
Le Cnam, ESYCOM (EA2552), Le Cnam, ESIEE-Paris, UPEM, France
*
Corresponding author: Z.G. Tegegne Email: [email protected]

Abstract

A 10 × 10 μm2 SiGe heterojunction bipolar photo-transistor (HPT) is fabricated using a commercial technological process of 80 GHz SiGe bipolar transistors (HBT). Its technology and structure are first briefly described. Its optimal opto-microwave dynamic performance is then analyzed versus voltage biasing conditions for opto-microwave continuous wave measurements. The optimal biasing points are then chosen in order to maximize the optical transition frequency (fTopt) and the opto-microwave responsivity of the HPT. An opto-microwave scanning near-field optical microscopy (OM-SNOM) is performed using these optimum bias conditions to localize the region of the SiGe HPT with highest frequency response. The OM-SNOM results are key to extract the optical coupling of the probe to the HPT (of 32.3%) and thus the absolute responsivity of the HPT. The effect of the substrate is also observed as it limits the extraction of the intrinsic HPT performance. A maximum optical transition frequency of 4.12 GHz and an absolute low frequency opto-microwave responsivity of 0.805A/W are extracted at 850 nm.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Guillory, J. et al. : 60 GHz intermediate frequency over fiber using a passive multipoint-to-multipoint architecture, in 16th European conf. on Networks and Optical Communications, July 2011.Google Scholar
[2] Polleux, J.L.; Moutier, F.; Billabert, A.L.; Rumelhard, C.; Sönmez, E.; Schumacher, H.: A Strained SiGe layer heterojunction bipolar phototransistor for short-range opto-microwave applications, in IEEE Int. Topical Meeting on Microwave Photonics, MWP2003, Hungary, September 2003.Google Scholar
[3] Polleux, J.L.; Moutier, F.; Billabert, A.L.; Rumelhard, C.; Sönmez, E.; Schumacher, H.: An SiGe/Si heterojunction phototransistor for opto-microwave applications: modeling and first experimental results, in The GAAS Conf. of the European Microwave Week, Munich, Germany, October 2003.Google Scholar
[4] Pei, Z. et al. : Bandwidth enhancement in an integratable SiGe phototransistor by removal of excess carriers. IEEE Electron Device Lett., 25(5) (2004), 286288.Google Scholar
[5] Yin, T. et al. : Low-cost, high efficiency and high-speed SiGe phototransistors in commercial BiCMOS. IEEE Photonics Technol. Lett., 18 (1), (2006), 5557.CrossRefGoogle Scholar
[6] Egels, M. et al. : Design of an optically frequency or phase-controlled oscillator for hybrid fiber-radio LAN at 5.2 GHz. In Microw. Opt. Technol. Lett., 45 (2) (2005), 104107.Google Scholar
[7] Kim, J.; Kanakaraju, S.; Johnson, W.B.; Lee, C.-H.: InP/InGaAs uni-travelling carrier heterojunction phototransistors. Electronics Lett., 45(12) (2009), 649651.CrossRefGoogle Scholar
[8] Leven, A.; Houtsma, V.; Kopf, R.; Baeyens, Y.; Chen, Y.-K.: InP-based double-heterostructure phototransistors with 135 GHz optical gain cutoff frequency. Electronics Lett. 40(13) (2004), 833834.Google Scholar
[9] Rosales, M.D.; Polleux, J-L.; Algani, C.: Improving Optical Detection in SiGe Heterojunction Phototransistors, in ISMOT, June 20–23, 2011.Google Scholar
[10] Rosales, M.D.: Study of SiGe HPT for Radio-over-Fiber Applications, Ph.D. thesis, Université Paris-Est, ESYCOM, ESIEE Paris, UPEM, Le Cnam, 2014.Google Scholar
[11] Marchlewski, A.; Zimmermann, H.: BiCMOS phototransistors, in Proc. of SPIE, vol. 7003, 2008.CrossRefGoogle Scholar
[12] Apsel, A.B.; Yin, T.; Pappu, A.M.: Photonic VLSI for on-chip computing architectures, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conf. Series, vol. 5597, pp. 1–12, 2004.Google Scholar
[13] Chen, P.C.P.; Pappu, A.M.; Apsel, A.B.: Monolithic Integrated SiGe Optical Receiver and Detector, presented at the Lasers and Electro-Optics, 2007, in CLEO 2007. Conf. on, 2007, pp. 1–2.CrossRefGoogle Scholar
[14] Lecoy, P.; Delacressonnière, B.: Design and realization of an optically controlled oscillator for radio over fiber at 5.2 GHz,” Microwave Photonics, 2006. MWP'06, in Int. Topical Meeting on, 2006, pp. 1–4.Google Scholar
[15] Viana, C.; Tegegne, Z.G.; Rosales, M.; Polleux, J.L.; Algani, C.; Lecocq, V.; Lyszyk, C.; Denet, S.: Hybrid photo-receiver based on SiGe heterojunction photo-transistor for low-cost 60 GHz intermediate-frequency radio-over-fibre applications. IEEE Electronic Lett., 51 (8) (2015), 640642.Google Scholar
[16] Moutier, F.; Polleux, J.L.; Rumelhard, C.; Schumacher, H.: Frequency response enhancement of a single strained layer SiGe phototransistor based on physical simulations, in GAAS Conf. of the European Microwave Week 2005, Paris, France, 2005.Google Scholar
[17] Helme, J.P.; Houstron, P.A.: Analytical modeling of speed response of heterojunction bipolar phototransistors. IEEE J. Lightwave Technol., 25 (5) (2007), 12471255.Google Scholar
[18] Yuan, F. et al. : MEXTRAM modeling of Si-SiGe HPTs. IEEE Trans. Electron Devices, 51 (6) (2004), 870876.Google Scholar
[19] Rosales, M.D.; Duport, F.; Schiellein, J.; Polleux, J.L.; Algani, C.; Rumelhard, C.: Opto-microwave experimental mapping of SiGe/Si phototransistors at 850 nm. Int. J. Microw. Wireless Technol., 1 (6) (2009), 469473.Google Scholar
[20] Liu, G.; Trasser, A.; Schumacher, H.: 33–43 GHz and 66–86 GHz VCO with high output power in an 80 GHz SiGe HBT technology. IEEE Microw. Wireless Compon. Lett., 20 (10) (2010), 557559.Google Scholar
[21] Schiellein, J. et al. : Analysis of opto-microwave paths into a InP/InGaAs UTC-HPT, in Microwave Conf. (EuMC), 2011 41st European, October 2011, pp. 949–952.Google Scholar
[22] Polleux, J-L; Paszkiewicz, L.; Billabert, A-L.; Salset, J.; Rumelhard, C.: Optimization of InP–InGaAs HPT gain: design of an opto-microwave monolithic amplifier. IEEE Trans. Microw. Theory Tech., 52 (3) (2004), 871881.Google Scholar
[23] Agilent: Measuring non-insertable devices,” agilent 8510–13 product note. Agilent Technol. Tech. Rep., (1999).Google Scholar