Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T02:08:03.476Z Has data issue: false hasContentIssue false

AlGaN/GaN epitaxy and technology

Published online by Cambridge University Press:  11 March 2010

Patrick Waltereit*
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Wolfgang Bronner
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Rüdiger Quay
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Michael Dammann
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Rudolf Kiefer
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Wilfried Pletschen
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Stefan Müller
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Rolf Aidam
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Hanspeter Menner
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Lutz Kirste
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Klaus Köhler
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Michael Mikulla
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Oliver Ambacher
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
*
Corresponding author: P. Waltereit Email: [email protected]

Abstract

We present an overview on epitaxial growth, processing technology, device performance, and reliability of our GaN high electron mobility transistors (HEMTs) manufactured on 3- and 4-in. SiC substrates. Epitaxy and processing are optimized for both performance and reliability. We use three different gate lengths, namely 500 nm for 1–6 GHz applications, 250 nm for devices between 6 and 18 GHz, and 150 nm for higher frequencies. The developed HEMTs demonstrate excellent high-voltage stability, high power performance, and large DC to RF conversion efficiencies for all gate lengths. On large gate width devices for base station applications, an output power beyond 125 W is achieved with a power added efficiency around 60% and a linear gain around 16 dB. Reliability is tested both under DC and RF conditions with supply voltage of 50 and 30 V for 500 and 250 nm gates, respectively. DC tests on HEMT devices return a drain current change of just about 10% under IDQ conditions. Under RF stress the observed change in output power density is below 0.2 dB after more than 1000 h for both gate length technologies.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Wu, Y.-F. et al. : 30-W/mm GaNHEMTs by field plate optimization. IEEE Electron. Dev. Lett., 25 (3) (2004), 117.CrossRefGoogle Scholar
[2]Dora, Y.; Chakraborty, A.; Mccarthy, L.; Keller, S.; Denbaars, S.P.; Mishra, U.K.: High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. IEEE Electron. Dev. Lett., 27 (9) (2006), 713.CrossRefGoogle Scholar
[3]Green, B.M.; Tilak, V.; Kaper, V.S.; Smart, J.A.; Shealy, J.R.; Eastman, L.F.: Microwave power limits of AlGaN/GaN HEMTs under pulsed-bias conditions. Trans. Microwave Theory Tech., 51 (2) (2003), 618.CrossRefGoogle Scholar
[4]Nikaido, J.; Kikkawa, T.; Yokokawa, S.; Tateno, Y.: A Highly Uniform and Reliable AlGaN/GaN HEMT, in Proceedings of the CS MANTECH 2005, New Orleans, USAGaAs Mantech, St. Louis, 2005, 151.Google Scholar
[5]Kikkawa, T.; Imanishi, K.; Hara, N.; Shigematsu, H.; Joshin, K.: Recent progress of GaN electronic devices for wireless communication system. Proc. SPIE, 6894 (2008), 68941Q.CrossRefGoogle Scholar
[6]Poblenz, C. et al. : Effect of AlN nucleation layer growth conditions on buffer leakage in AlGaN/GaN high electron mobility transistors grown by molecular beam epitaxy (MBE). J. Vac. Sci. Technol. B, 23 (2005), 1562.CrossRefGoogle Scholar
[7]Heikman, S.; Keller, S.; Den Baars, S.P.; Mishra, U.K.: Growth of Fe doped semi-insulating GaN by metalorganic chemical vapor deposition. Appl. Phys. Lett., 81 (2002), 439.CrossRefGoogle Scholar
[8]Poblenz, C.; Waltereit, P.; Rajan, S.; Heikman, S.J.; Mishra, U.K.; Speck, J.S.: Effect of carbon doping on buffer leakage in AlGaN/GaN high electron mobility transistors. J. Vac. Sci. Technol. B, 22 (2004), 1145.CrossRefGoogle Scholar
[9]Waltereit, P. et al. : Impact of GaN cap thickness on optical, electrical, and device properties in AlGaN/GaN high electron mobility transistor structures. J. Appl. Phys., 106 (23) (2009), 023535 1–7.CrossRefGoogle Scholar
[10]HRXRD Software: LEPTOS, Bruker AXS GmbH, Karlsruhe, Germany.Google Scholar
[11]Poblenz, C.; Waltereit, P.; Speck, J.S.: Uniformity and control of surface morphology during growth of GaN by molecular beam epitaxy. J. Vac. Sci. Technol. B, 23 (2005), 1379.CrossRefGoogle Scholar
[12]Bernadini, F.; Fiorentini, V.; Vanderbilt, D.: Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B, 56 (1997), R10024.Google Scholar
[13]Köhler, K. et al. : Influence of the surface potential on electrical properties of AlxGa1-xN/GaN heterostructures with different Al-content. J. Appl. Phys. (in print, Volume 107).Google Scholar
[14]Waltereit, P.; Poblenz, C.; Rajan, S.; Wu, F.; Mishra, U.K.; Speck, J.S.: Structural properties of GaN buffer layers on 4H-SiC(0001) grown by plasma-assisted molecular beam epitaxy for high electron mobility transistors. Jpn. J. Appl. Phys., 43 (2004), 1520.CrossRefGoogle Scholar
[15]Benkhelifa, F. et al. : Performance and Fabrication of GaN/AlGaN Power MMIC at 10 GHz, in CS Mantech Conference 2005, New Orleans, USA, 163Google Scholar
[16]Schuh, P. et al. : X-band T/R-module front-end based on GaN MMIC. Int. J. Microwave Wirel. Technol., 1 (4) (2009), 387394.CrossRefGoogle Scholar
[17]Waltereit, P. et al. : Development of rugged 2 GHz power bars delivering more than 100 W and 60% power added efficiency, in International Symposium on Compound Semiconductors 2009, Santa Barbara, USA.Google Scholar
[18]Kuball, M. et al. : “Integrated Raman – IR thermography on AlGaN/GaN transistors”, IEEE MTT-S IMS Dig., 1–5 2006, 13391342.Google Scholar
[19]Waltereit, P. et al. : GaN HEMT and MMIC development at Fraunhofer IAF: performance and reliability. Phys. Status Solidi (a), 206 (6) (2009), 12151220.CrossRefGoogle Scholar