Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T14:31:56.791Z Has data issue: false hasContentIssue false

Small- and large-signal modeling of InP HBTs in transferred-substrate technology

Published online by Cambridge University Press:  11 March 2014

Tom K. Johansen*
Affiliation:
Department of Electrical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
Matthias Rudolph
Affiliation:
Brandenburg University of Technology, D-03046 Cottbus, Germany Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, D-12489 Berlin, Germany
Thomas Jensen
Affiliation:
Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, D-12489 Berlin, Germany
Tomas Kraemer
Affiliation:
Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, D-12489 Berlin, Germany
Nils Weimann
Affiliation:
Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, D-12489 Berlin, Germany
Frank Schnieder
Affiliation:
Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, D-12489 Berlin, Germany
Viktor Krozer
Affiliation:
Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, D-12489 Berlin, Germany
Wolfgang Heinrich
Affiliation:
Ferdinand-Braun-Institut (FBH), Leibniz-Institut für Höchstfrequenztechnik, D-12489 Berlin, Germany
*
Corresponding author: T. K. Johansen; Email: [email protected]

Abstract

In this paper, the small- and large-signal modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. The small-signal equivalent circuit parameters for TS-HBTs in two-terminal and three-terminal configurations are determined by employing a direct parameter extraction methodology dedicated to III–V based HBTs. It is shown that the modeling of measured S-parameters can be improved in the millimeter-wave frequency range by augmenting the small-signal model with a description of AC current crowding. The extracted elements of the small-signal model structure are employed as a starting point for the extraction of a large-signal model. The developed large-signal model for the TS-HBTs accurately predicts the DC over temperature and small-signal performance over bias as well as the large-signal performance at millimeter-wave frequencies.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Jensen, T.; Kraemer, T.; Al-Sawaf, T.; Krozer, V.; Heinrich, W.; Traenkle, G.: Multifinger InP HBT's in transferred-substrate technology for 100 GHz power amplifiers, in 7th European Microwave Integrated Circuits Conf., Amsterdam, The Netherlands, 2012.Google Scholar
[2]Scott, D.W.; Monier, C.; Wang, S.; Radisic, V.; Nguyen, P.; Cavus, A.; Deal, W.R.; G.-Aitken, A.: InP HBT transferred to higher thermal conductivity substrate. IEEE Trans. Electron Device Lett., 33 (2012), 507509.Google Scholar
[3]Camnitz, L.H.; Moll, N.: An analysis of the cutoff-frequency behavior of microwave heterojunction bipolar transistors, in Compound Semiconductor Transistors, Tiwari, S. (ed.), Physics and Technology, IEEE Press, pp. 2146, 1993.Google Scholar
[4]Rudolph, M.: Introduction to Modeling HBTs, Artech House, Norwood, MA, 2006.Google Scholar
[5]Degachi, L.; Ghannouchi, F.M.: An augmented small-signal HBT model with its analytical based parameter extraction technique. IEEE Trans. Electron Devices, 55 (2008), 968972.CrossRefGoogle Scholar
[6]Gobert, Y.; Tasker, P.J.; Bachem, K.H.: A physical, yet simple, small-signal equivalent circuit for the heterojunction bipolar transistor. IEEE Trans. Microw. Theory Tech., 45 (1997), 149153.Google Scholar
[7]Johansen, T.K.; Krozer, V.; Nodjiadjim, V.; Konczykowska, A.; Dupuy, J.-Y.; Riet, M.: Improved extrinsic base resistance extraction for submicronmeter InP/InGaAs DHBT models. IEEE Trans. Electron Devices, 58 (2011), 30043011.CrossRefGoogle Scholar
[8]Kraemer, T.; Rudolph, M.; Schmueckle, F.J.; Wuerfl, J.; Traenkle, G.: InP DHBT process in transferred-substrate technology with f t and f max over 400 GHz. IEEE Trans. Electron Devices, 56 (2009), 18971903.Google Scholar
[9]Johansen, T.K.; Krozer, V.; Hadziabdic, D.; Jiang, C.; Konczykowska, A.; Dupuy, J.-Y.: A novel method for HBT intrinsic collector resistance extraction from S-parameters, in Asia-Pacific Microwave Conf., Bangkok, Thailand, 2007.Google Scholar
[10]Rios, J.M.M.; Lunardi, L.M.; Chandrasekhar, S.; Miyamoto, Y.: A self-consistent method for complete small-signal parameter extraction of InP-based heterojunction bipolar transistors, IEEE Trans. Microw. Theory Tech., 45 (1997), 3945.CrossRefGoogle Scholar
[11]Suh, Y.; Shin, J.-H.; Kim, B.; Heo, D.; Radhavan, A.; Laskar, J.: Direct extraction method for internal equivalent circuit parameters of HBT small-signal hybrid-Π model, in IEEE MTT-S Int. Microwave Symp., 2000.Google Scholar
[12]Horng, T.S.; Wu, J.M.; Huang, H.H.: An extrinsic-inductance independent approach for direct extraction of HBT intrinsic circuit parameters, in IEEE MTT-S Int. Microwave Symp., 2001.Google Scholar
[13]Versleijen, M.P.J.G.: Distributed high frequency effects in bipolar transistors, in Proc. of Bipolar Circuits and Technology Meeting, 1999.Google Scholar