Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T05:20:33.807Z Has data issue: false hasContentIssue false

Resonant characteristics of rectangular Microstrip antenna printed on electric–magnetic uniaxial anisotropic substrates

Published online by Cambridge University Press:  26 August 2014

Mourad Hassad
Affiliation:
Electronics Department, University of Batna, 05000 Batna, Algeria
Sami Bedra
Affiliation:
Electronics Department, University of Batna, 05000 Batna, Algeria
Randa Bedra
Affiliation:
Electronics Department, University of Batna, 05000 Batna, Algeria
Siham Benkouda
Affiliation:
Electronics Department, University of Constantine 1, 25000 Constantine, Algeria
Akrame Soufiane Boughrara
Affiliation:
Electronics Department, University of Batna, 05000 Batna, Algeria
Tarek Fortaki*
Affiliation:
Electronics Department, University of Batna, 05000 Batna, Algeria
*
Corresponding author: T. Fortaki Email: [email protected]

Abstract

In this paper, the resonant characteristics of the rectangular microstrip patch antenna on uniaxially anisotropic substrates are determined via spectral domain analysis. The anisotropic substrates are characterized by both permittivity and permeability tensors. Green's functions of the structure in Fourier transform domain are determined using the Galerkin's technique. The sinusoidal functions are selected as the basis function, which show fast numerical convergence. Numerical results concerning the effects of electric anisotropy and antenna parameters on the resonant characteristics of rectangular microstrip antenna are presented and discussed. Results are compared with previously published data and are found to be in good agreement.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Barkat, O.; Benghalia, A.: Radiation and resonant frequency of superconducting annular ring microstrip antenna on uniaxial anisotropic media. J. Infrared Millim. Terahertz Waves, 30 (10) (2009), 10531066.Google Scholar
[2]Vasconcelos, C.; Silva, S.; Albuquerque, M.; Oliveira, J.; d'Assunção, A.: Annular ring microstrip antennas for millimeter wave applications. Int. J. Infrared Millim. Waves, 28 (10) (2007), 821829.CrossRefGoogle Scholar
[3]Gurel, C.; Yazgan, E.: Characteristics of a circular patch microstrip antenna on uniaxially anisotropic substrate. IEEE Trans. Antennas Propag., 52 (10) (2004), 25322537.CrossRefGoogle Scholar
[4]Zebiri, C.; Lashab, M.; Benabdelaziz, F.: Rectangular microstrip antenna with uniaxial bi-anisotropic chiral substrate–superstrate. IET Microw. Antennas Propag., 5 (1) (2011), 1729.Google Scholar
[5]Boufrioua, A.: Spectral-domain analysis of a resistive patch antenna with uniaxial substrate, in IEEE 17th Int. Conf. on Telecommunications (ICT), 2010 (2010), 362–367.Google Scholar
[6]Fortaki, T.; Khedrouche, D.; Bouttout, F.; Benghalia, A.: A numerically efficient full-wave analysis of a tunable rectangular microstrip patch. Int. J. Electron., 91 (1) (2004), 5770.CrossRefGoogle Scholar
[7]Djouablia, L.; Messaouden, I.; Benghalia, A.: Uniaxial anisotropic substrate effects on the resonance of an equitriangular microstrip patch antenna. Progr. Electromagn. Res. M, 24 (2012), 4556.Google Scholar
[8]Bedra, S.; Bedra, R.; Benkouda, S.; Fortaki, T.: Full-wave analysis of anisotropic circular microstrip antenna with air gap layer. Progr. Electromagn. Res. M, 34 (2014), 143151.Google Scholar
[9]Gürel, C.; Yazgan, E.: Resonant frequency of air gap tuned circular microstrip antenna with anisotropic substrate and superstrate layers. J. Electromagn. Waves Appl., 24 (13) (2010), 17311740.CrossRefGoogle Scholar
[10]Silva Neto, V.P.; Vasconcelos, C.F.; Albuquerque, M.R.M.; D'Assunção, A.G.: High selectivity band pass filters on iso/anisotropic dielectric, ferrimagnetic, and metamaterial substrates. Microw. Opt. Technol. Lett., 56 (1) (2014), 201206.Google Scholar
[11]Vasconcelos, C.; Albuquerque, M.; Freitas, G.; d'Assunção, A.: Study of a microstrip antenna on anisotropic metamaterials. Appl. Phys. A, 111 (4) (2013), 10851089.Google Scholar
[12]Messai, A.; Benkouda, S.; Amir, M.; Bedra, S.; Fortaki, T.: Analysis of high superconducting rectangular microstrip patches over ground planes with rectangular apertures in substrates containing anisotropic materials. Int. J. Antennas Propag., 2013 (2013), 17.Google Scholar
[13]Benkouda, S.; Fortaki, T.: Study of microstrip patch resonator printed on anisotropic substrate characterized by permittivity and permeability tensors, in Proc. PIERS11, Marrakech, Morocco, 2011, p. 398.Google Scholar
[14]Fortaki, T.; Djouane, L.; Chebara, F., Benghalia, A.: Radiation of a rectangular microstrip patch antenna covered with a dielectric layer. Int. J. Electron., 95 (9) (2008), 989998.Google Scholar
[15]Fortaki, T.; Benghalia, A.: Rigorous full-wave analysis of rectangular microstrip patches over ground planes with rectangular apertures in multilayered substrates that contain isotropic and uniaxial anisotropic materials. Microw. Opt. Technol. Lett., 41 (6) (2004), 496500.Google Scholar
[16]Bouttout, F.; Benabdelaziz, F.; Fortaki, T.; Khedrouche, D.: Resonant frequency and bandwidth of a superstrate-loaded rectangular patch on a uniaxial anisotropic substrate. Commun. Numer. Methods Eng., 16 (7) (2000), 459473.3.0.CO;2-7>CrossRefGoogle Scholar
[17]Pozar, D.M.: Radiation and scattering from a microstrip patch on a uniaxial substrate. IEEE Trans. Antennas Propag., 35 (6) (1987), 613621.Google Scholar
[18]Aouabdia, N.; Belhadj-Tahar, N.-E.; Alquie, G.; Benabdelaziz, F.: Theoretical and experimental evaluation of superstrate effect on rectangular patch resonator parameters. Progr. Electromagn. Res. B, 32 (2011), 129147.Google Scholar