Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T11:12:47.182Z Has data issue: false hasContentIssue false

Optically controlled UWB antenna using photonic crystal waveguides

Published online by Cambridge University Press:  11 May 2017

Heba Zakaria
Affiliation:
Faculty of engineering, Ain Shams University, Cairo, Egypt
Moataza Hindy*
Affiliation:
Electronics research Institute, Cairo, Egypt
Adel El-Henawi
Affiliation:
Faculty of engineering, Ain Shams University, Cairo, Egypt
*
Corresponding author: M. Hindy Email: [email protected]

Abstract

This paper presents a new optically controlled reconfigurable ultra-wideband antenna using reconfigurable optical router with photonic crystal substrate. The proposed antenna has three optical switches. The optical switches are made by placing silicon wafers over three slots etched on the resonator. The coplanar fed microstrip antenna can work at eight modes using optically controlled switches. This design proposes triple narrow notched bands at center frequencies 3.5 GHz “WiMAX”, 5.5 GHz “WLAN” and 8.4 GHz “X-band satellite communication”. The proposed antenna satisfies the voltage standing wave ratio requirement of <2 in the frequency band between 2.6 and 11.8 GHz except for the three rejected bands. According to the incident light, the physical properties of these switches can be changed from an insulator state (OFF state) to a near-conducting state (ON state). The incident light is coupled to the optical switches using a reconfigurable optical router. The proposed antenna provides high gain, and high efficiency all over the frequency band excluding the rejected bands.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]First Report and order, revision of part 15 of the commission's Rule Regarding Ultra-Wideband Transmission System FCC 02-48, Federal Communications Commission, 2002.Google Scholar
[2] Flemish, J. R.; Haupt, R. L.: Optimization of a photonically controlled microwave switch and attenuator. IEEE Trans. Microw. Theory Tech., 58 (10) (2010), 25822588.CrossRefGoogle Scholar
[3] Hindy, M. A.: MM-wave filter with laser control in waveguide. J. Appl. Opt., 34 (36) (1995), 82948297.Google Scholar
[4] Al-Ruwaihi, K.M.; Hindy, M.A.: Analysis of a digital microstrip optical switch: a novel method. J. Appl. Opt., 36 (6) (1997), 12131217.Google Scholar
[5] Draskovic, D.; Panagamuwa, C.; Vardaxoglou, J. C.; Budimir, D.: Frequency reconfigurable RF circuits using photo-conducting switches. Int. J. RF Microw. Comput.-aided Eng., 20 (1) (2010), 1521.Google Scholar
[6] Hindy, M. A.: Modeling and characterization of optical picoseconds sampling. J. Microw. Opt. Lett., 2 (2000), 148152.Google Scholar
[7] Mehranpour, M.; Nourinia, J.; Ghobadi, Ch.; Ojaroudi, M.: Dual band-notched square monopole antenna for ultra-wideband applications. IEEE Antennas Wireless Propag. Lett., 11 (2012), 172175.Google Scholar
[8] Panagamuwa, C. J.; Chauraya, A.; Vardaxoglou, J. C.: Frequency and beam reconfigurable antenna using photo-conducting switches. IEEE Trans. Antennas Propag., 54 (2) (2006), 449454.CrossRefGoogle Scholar
[9] Tawk, Y.; Albrecht, A.R.; Hemmady, S.; Balkrishnan, G.; Christodoulou, C.G.: Optically pumped frequency reconfigurable antenna design. IEEE Antennas Wireless Propag. Lett., 9 (2010), 280283.CrossRefGoogle Scholar
[10] Areed, N.F.F.; Obeyed, S.S.A.: Novel all-optical liquid photonic crystal router. IEEE Photonics Technol. Lett., 25 (13) (2013), 12541257.Google Scholar
[11] Abdel-Ghani, A.M.; Hameed, M.F.O.; AbdelRazzak, M.; Hindy, M.A.; Obayya, S. S. A.: Liquid crystal photonic crystal fiber with high non-linearity and birefringence. IET Optoelectron., 8 (6) (2014), 210216.CrossRefGoogle Scholar
[12] Areed, N.F.F.; Obayya, S.S.A.: Multiple image encryption system based on nematic liquid photonic crystal layer. IEEE J. Lightw. Technol., 32 (7) (2014), 13441350.CrossRefGoogle Scholar
[13] Yu, T.; Zhou, H.; Yang, J.; Jiang, X.; Wang, M.: Ultra compact multiway beam splitters using multiple coupled photonic crystal waveguides. J. Phys. D: Appl. Phys., 41 (2008), 15.CrossRefGoogle Scholar
[14] Varshney, S. K.; Saitosh, K.; Sinha, R. K.: Coupling characteristics of multicore PCF-based 1 × 4 power splitter. IEEE J. Light Wave Technol., 27 (12) (2009), 2062–68.Google Scholar
[15] Boscolo, S.; Midrio, M.; Krauss, T.F.: Y junction in photonic crystal channel waveguides: high transmission and impedance matching. Opt. Lett., 27 (2002), 10011003.CrossRefGoogle ScholarPubMed
[16] Digge, J.; Rindhe, B. U.; Narayankhedkar, S. K.: Photonic crystal waveguide 1 × 3 flexible power splitter for optical network. World Acad. Sci, Eng. Technol. Int. J. Math. Comput. Phys. Electr. Comput. Eng., 7 (1) (2013), 138142.Google Scholar
[17] Russel, P. St. J.: Photonic crystal fibers. IEEE J. Light Wave Technol., 24 (12) (2006), 47294749.Google Scholar
[18] Digge, J.; Narayankhedkar, S.K.: Novel design of photonic crystal devices for optical network. Int. J. Comput. Appl., 6 (2012), 2530.Google Scholar
[19] Fan, S.; Johnson, S.G.; Manolatou, J.D.C.; Haus, H. A.: Waveguide branches in photonic crystals. J. Opt. Soc. Am. B, 18 (2001), 162165.Google Scholar
[20] Buczynski, R.: Photonic crystal fibers. Acta Phys. Pol. A (Proc. XXXIII Int. Semiconducting Compounds, Jaszowiec), 106 (2004), 141167.Google Scholar
[21] Broeng, J.; Mogilevstev, D.; Barkou, S. E.; Bjarklev, A.: Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol., 5 (1999), 305330.Google Scholar
[22] Singh, A.; Singh, S.r: A trapezoidal microstrip patch antennaon photonic crystal substrate for high speed THz applications. Photonics Nanostruct. – Fundam. Appl., 15 (2015), 5262.Google Scholar