Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T11:21:36.675Z Has data issue: false hasContentIssue false

Miniaturized Bagley Polygon power divider by using composite right-/left-handed transmission lines

Published online by Cambridge University Press:  24 August 2017

Kaijun Song*
Affiliation:
EHF Key Laboratory of Science, School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China. Phone: +86 28 61830311
Te Kong
Affiliation:
EHF Key Laboratory of Science, School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China. Phone: +86 28 61830311
Xue Ren
Affiliation:
EHF Key Laboratory of Science, School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China. Phone: +86 28 61830311
Yu Zhu
Affiliation:
EHF Key Laboratory of Science, School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China. Phone: +86 28 61830311
Yong Fan
Affiliation:
EHF Key Laboratory of Science, School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China. Phone: +86 28 61830311
*
Corresponding author: S. Kaijun Email: [email protected]; [email protected]

Abstract

A miniaturized Bagley Polygon power divider based on composite right/left-handed transmission line is presented. The composite right/left-handed transmission line and conventional microstrip transmission line are utilized to realize the 0° phase shift transmission line, which is used to replace the 180° transmission line of the conventional Bagley Polygon power divider. As a result, miniaturization is realized, without deteriorating the isolation between the output ports. The design equations are presented. This power divider shows advantages compared with other miniaturized ones. For verification, a miniaturized Bagley Polygon power divider is designed and fabricated. The 58.2% length reduction of the counterpart is realized. The measurement and simulation results show good agreement.

Type
Industrial and Engineering Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Xue, Q.; Song, K.; Chan, C.H.: China: power combiners/dividers. IEEE Microw. Mag., 12 (3) (2011), 96106.Google Scholar
[2] Ahmadzadeh, M.; Rasekh, P.; Safian, R.; Askari, G.: Mirmohammad-sadeghi, H.: broadband rectangular high power divider/combiner. IET Microw. Antennas Propag., 9 (1) (2015), 5863.CrossRefGoogle Scholar
[3] Chu, Q.-X.; Mo, D.-Y.; Wu, Q.-S.: An isolated radial power divider via circular waveguide TE01-mode transducer. IEEE Trans. Microw. Theory Tech., 63 (12) (2015), 39883996.CrossRefGoogle Scholar
[4] Song, K.; Xue, Q.: Ultra-wideband 12-way coaxial waveguide power divider with rotated electric field mode. IET Microw. Antennas Propag., 5 (5) (2011), 512518.CrossRefGoogle Scholar
[5] Jia, P.C. et al. : Broad-band high-power amplifier using spatial power-combining technique. IEEE Trans. Mircow. Theory Tech., 51 (12) (2003), 24692475.Google Scholar
[6] Xue, Q.; Song, K.: Ultra-wideband (UWB) coaxial-waveguide power divider with flat group delay response. Electron. Lett., 46 (17) (2010), 12361237.CrossRefGoogle Scholar
[7] Alexanian, A.; York, R.A.: Broadband waveguide-based spatial combiner, in IEEE MTT-S Int. Microwave Symp. Digest, vol. 3, 1997, 11391142.Google Scholar
[8] Song, K.; Fan, Y.; Xue, Q.: Millimeter-wave power amplifier based on coaxial-waveguide power-combining circuits. IEEE Microw. Wireless Compon. Lett., 20 (1) (2010), 4648.CrossRefGoogle Scholar
[9] Jia, P.C.; Chen, L.Y.; Alexanian, A.; York, R.A.: Multioctave spatial power combining in oversized coaxial waveguide. IEEE Trans. Microw. Theory Tech., 50 (5) (2002), 13551360.Google Scholar
[10] Fathy, A.E.; Lee, S.-W.; Kalokitis, D.: A simplified design approach for radial power combiners. IEEE Trans. Microw. Theory Tech., 54 (1) (2006), 247255.CrossRefGoogle Scholar
[11] de Villiers, D.I.L.; van der Walt, P.W.; Meyer, P.: Design of conical transmission line power combiners using tapered line matching sections. IEEE Trans. Microw. Theory Tech., 56 (6) (2008), 14781484.CrossRefGoogle Scholar
[12] Jiang, X.; Ortiz, S.C.; Mortazawi, A.: A Ka-band power amplifier based on the traveling-wave power-dividing/combining slotted-waveguide circuit. IEEE Trans. Microw. Theory Tech., 52 (2) (2004), 633639.CrossRefGoogle Scholar
[13] Becker, J.P.; Oudghiri, A.M.: A planar probe double ladder waveguide power divider. IEEE Microw. Wireless Compon. Lett., 15 (3) (2005), 168170.CrossRefGoogle Scholar
[14] Eom, D.-S.; Byun, J.; Lee, H.-Y.: Multilayer substrate integrated waveguide four-way out-of-phase power divider. IEEE Trans. Microw. Theory Tech., 57 (12) (2009), 34693476.Google Scholar
[15] Zhang, Z.-Y.; Wu, K.: Broadband half-mode substrate integrated waveguide (HMSIW) Wilkinson power divider, in IEEE MTT-S Int. Microwave Symp. Digest, 2008, 879882.Google Scholar
[16] Bialkowski, M.; Abbosh, A.M.: Design of a compact UWB out-of-phase power divider. IEEE Microw. Wireless Compon. Lett., 17 (4) (2007), 289291.CrossRefGoogle Scholar
[17] Abbosh, A.M.: Design of ultra-wideband three-way arbitrary power dividers. IEEE Trans. Microw. Theory Tech., 56 (1) (2008), 194201.CrossRefGoogle Scholar
[18] Ren, X.; Song, K.; Zhang, F.; Hu, B.: Miniaturized Gysel power divider based on composite right/left-handed transmission lines. IEEE Microw. Wireless Compon. Lett., 25 (1) (2015), 2224.CrossRefGoogle Scholar
[19] Wong, S.W.; Zhu, L.: Ultra-wideband power divider with good in-band splitting and isolation performances. IEEE Microw. Wireless Compon. Lett., 18 (8) (2008), 518520.CrossRefGoogle Scholar
[20] Duong, T.; Kim, I.: Single section Wilkinson type UWB power divider with bandpass filter and DC block characteristics in LTCC technology, in IEEE MTT-S Int. Microwave Symp. Digest, vol. 1, 2010, 117120.CrossRefGoogle Scholar
[21] Song, K.; Mo, Y.; Xue, Q.; Fan, Y.: Wideband four-way out-of-phase slotline power dividers. IEEE Trans. Ind. Electron., 61 (7) (2014), 35983606.CrossRefGoogle Scholar
[22] Ren, X.; Song, K.; Fan, M.; Zhu, Y.; Hu, B.: Compact dual-band Gysel power divider based on composite right- and left-handed transmission lines. IEEE Microw. Wireless Compon. Lett., 25 (2) (2015), 8284.CrossRefGoogle Scholar
[23] Oraizi, H.; Ayati, S.: Optimum design of a modified 3-way Bagley rectangular power divider, in Mediterranean Microwave. Symp., 2010, 2528.CrossRefGoogle Scholar
[24] Ren, X.; Song, K.; Hu, B.; Chen, Q.: Compact filtering power divider with good frequency selectivity and wide stopband based on composite right-/left-handed transmission lines. Microw. Opt. Technol. Lett., 56 (9) (2014), 21222125.CrossRefGoogle Scholar
[25] Sakagami, I.; Wuren, T.; Fujii, M.; Tahara, M.: Compact multi-way power dividers similar to the Bagley Polygon, in IEEE Int. Microwave Symp. (IMS), 2007, 419422.CrossRefGoogle Scholar
[26] Li, B.; Zhao, H.; Zhang, B.; Xu, H.: A novel design of miniaturized Bagley Polygon power divider using defected ground structure, in IEEE 8th Eur. Conf. on Antennas and Propagation (EuCAP), 2014, 21832186.CrossRefGoogle Scholar
[27] Li, J.; Liu, Y.; Li, S.; Yu, C.; Wu, Y.: Miniaturization of microstrip planar Bagley polygon power divider with dual transmission lines. Electron. Lett., 49 (16) (2013), 10151016.CrossRefGoogle Scholar
[28] Caloz, C.; Itoh, T.: Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Willey-IEEE Press, Hoboken, NJ, 2005, 85100.CrossRefGoogle Scholar