Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-03T01:24:00.975Z Has data issue: false hasContentIssue false

A low-cost millimeter-wave whispering gallery-mode-based sensor: design considerations and accurate analysis

Published online by Cambridge University Press:  24 May 2012

Aidin Taeb*
Affiliation:
Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Canada N2L 3G1. Phone: +1 519 888 4567 ext. 31437
Mohammad Neshat
Affiliation:
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, USA
Suren Gigoyan
Affiliation:
Institute of Radiophysics & Electronics NAS, Ashtarak, Armenia
Safieddin Safavi-Naeini
Affiliation:
Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Canada N2L 3G1. Phone: +1 519 888 4567 ext. 31437
*
Corresponding author: A. Taeb Email: [email protected]

Abstract

A dielectric waveguide-based structure coupled to a whispering gallery mode (WGM) disc resonator is introduced as a low-cost integrable millimeter-wave (mm-wave) bio-sensor. An efficient variational analysis method is developed and applied to the WGM. Three sets of sensors, operating in different ranges of frequency from 85 to 220 GHz, are fabricated and tested. The performance of the fabricated bio-sensor is demonstrated for sensing different concentrations of glucose solution samples at D-band. Also, the sensitivity, selectivity, and repeatability of these sensors are examined.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Gagnon, N.; Shaker, J.; Berini, P.; Roy, L.; Petosa, A.: Material characterization using a quasi-optical measurement system. IEEE Trans. Instrum. Meas., 52 (2003), 333336.CrossRefGoogle Scholar
[2]Yoshikawa, H.; Nakayama, A.: Measurements of complex permittivity at millimeter-wave frequencies with an end-loaded cavity resonator. IEEE Trans. Microw. Theory Tech., 56 (2008), 20012007.CrossRefGoogle Scholar
[3]Annino, G.; Cassettari, M.; Longo, I.; Martinelli, M.: Whispering gallery modes in a dielectric resonator: characterization at millimeter wavelength. IEEE Trans. Microw. Theory Tech., 45 (1997), 20252034.CrossRefGoogle Scholar
[4]Krupka, J.; Tobar, M.E.; Hartnett, J.G.; Cros, D.; Floch, J.M.: Extremely high-Q factor dielectric resonators for millimeter-wave applications. IEEE Trans. Microw. Theory Tech., 53 (2005), 702711.CrossRefGoogle Scholar
[5]Neshat, M.; Chen, H.; Gigoyan, S.; Saeedkia, D.; Safavi-Naeini, S.: Whispering gallery mode resonance sensor for dielectric sensing of drug tablets. Meas. Sci. Technol., 21 (2010), 015202(11).CrossRefGoogle Scholar
[6]Creedon, D.L.; Reshitnyk, Y.; Farr, W.; Martinis, J.M.; Duty, T.L.; Tobar, M.E.: High Q-factor sapphire whispering gallery mode microwave resonator at single photon energies and millikelvin temperature. Appl. Phys. Lett., 98 (2011), 222903(3).CrossRefGoogle Scholar
[7]Vedrenne, C.; Arnaud, J.: Whispering gallery modes of dielectric resonators. IEE Proc. Microw. Opt. Antennas, 129 (1982), 183187.CrossRefGoogle Scholar
[8]Vollmer, F.; Arnold, S.: Whispering gallery mode bio-sensing: label free detection down to single molecules. Nat. Methods, 5 (2008), 591596.CrossRefGoogle Scholar
[9]Blair, S.; Chen, Y.: Resonant-enhanced evanescent-wave fluorescence bio-sensing with cylindrical optical cavities. Appl. Opt., 40 (2001), 570582.CrossRefGoogle Scholar
[10]Zhu, J.; et al. : On-chip single nanoparticle detection and sizing by mode splitting in an ultra-high-Q micro resonator. Nat. Photonics, 4 (2010), 4649.CrossRefGoogle Scholar
[11]Quan, H.; Guo, Z.: Simulation of single transparent molecule interaction with an optical microcavity. Nanotechnology, 18 (2007), 15.CrossRefGoogle Scholar
[12]Kajfez, D.; Guillon, P.: Dielectric Resonators, Artech House, Dedham, MA, 1986.Google Scholar
[13]Tsuji, M.; Shigesawa, H.; Takiyama, K.: On the complex resonator frequency of open dielectric resonators. IEEE Trans. Microw. Theory Tech., 31 (1983), 392396.CrossRefGoogle Scholar
[14]Tobar, M.E.; Mann, A.G.: Resonant frequencies of higher order modes in cylindrical anisotropic dielectric resonators. IEEE Trans. Microw. Theory Tech., 39 (1991), 20772081.CrossRefGoogle Scholar
[15]Okamoto, K.: Fundamentals of Optical Waveguides, 2nd ed., Elsevier, Burlington, Massachusets, 2006.Google Scholar
[16]Mongia, R.K.: Resonant frequency of cylindrical dielectric resonator placed in an MIC environment. IEEE Trans. Microw. Theory Tech., 38 (1990), 802804.CrossRefGoogle Scholar
[17]Jaworski, M.; Pospieszalski, M.W.: An accurate solution of the cylindrical dielectric resonator problem. IEEE Trans. Microw. Theory Tech., 27 (1979), 639643.CrossRefGoogle Scholar
[18]Rumsey, V.H.: The reaction concept in electromagnetic theory. Phys. Rev., 94 (1954), 14831491.CrossRefGoogle Scholar
[19]Krupka, J.; Derzakowski, K.; Abramowicz, A.; Tobar, M.E.; Geyer, R.G.: Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials. IEEE Trans. Microw. Theory Tech., 47 (1999), 752759.CrossRefGoogle Scholar
[20]Pickup, J.C.; Hussain, F.; Evans, N.D.; Rolinsky, O.J.; Birch, D.J.: Fluorescence-based glucose sensors. Biosens. Bioelectron., 20 (2005), 25552565.CrossRefGoogle ScholarPubMed
[21]Feldman, B., Heller, A.: Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev., 108 (2008), 24822505.Google Scholar
[22]Zhang, K.; Li, D.: Electromagnetic Theory for Microwaves and Optoelectronics, Springer, 2007.Google Scholar