Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T01:12:21.914Z Has data issue: false hasContentIssue false

Laser induced microwave oscillator under the influence of interference

Published online by Cambridge University Press:  18 March 2014

Arindum Mukherjee
Affiliation:
Department of Electronics and Communication Engineering, Central Institute of Technology, Kokrajhar, Assam 783370, India
Somnath Chatterjee*
Affiliation:
Kanailal Vidyamandir (French Section), Chandernagore, India. Phone: +919433981389
Nikhil Ranjan Das
Affiliation:
Institute of Radiophysics and Electronics, Calcutta University, 92 A.P.C. Road, Kolkata 700009, West Bengal, India
Baidyanath Biswas
Affiliation:
Education Division, SKF Group of Institution, Mankundu, Hooghly 712139, West Bengal, India
*
Corresponding author: S. Chatterjee Email: [email protected]

Abstract

An optoelectronic oscillator (OEO) under the influence of a weak interference has been investigated. The system equation of the OEO under the influence of interference has been derived. A novel technique for calculating the lock range of the oscillator using the harmonic balance method in presence of interference has been demonstrated. Theoretical analysis coupled with experimental results has been presented.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nakazawa, M.; Nakashima, T.; Tokuda, M.: An optoelectronic self oscillatory circuit with an optical fiber delayed feedback and its injection locking technique. J. Lightwave Technol., LT-2 (5) (1984), 719730.CrossRefGoogle Scholar
[2] Yao, X.S.; Maleki, L.: High frequency optical subcarrier generator. Electron. Lett., 30 (78) (1994), 15251526.CrossRefGoogle Scholar
[3] Yao, X.S.; Maleki, L.: A Novel Photonic Oscillator. TDA Progress Report, 42–122 August 15, 1995.Google Scholar
[4] Yao, X.S.; Maleki, L.: A Light-Induced Microwave Oscillator. TDA Progress Report, 42–123, November 1995.Google Scholar
[5] Yao, X.S.; Maleki, L.: Converting light into spectrally pure microwave oscillation. Optics Lett., 21 (7) (1996), 483485.CrossRefGoogle ScholarPubMed
[6] Yao, X.S.; Maleki, L.: Optoelectronic oscillator for photonic systems. IEEE J. Quantum Electron., 32 (7) (1996), 11411149.CrossRefGoogle Scholar
[7] Zhou, W.; Blasche, G.: Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level. IEEE Transact. Microw. Theory Tech., 53 (3) (2005), 929933.CrossRefGoogle Scholar
[8] Yu, N.; Salik, E.; Maleki, L.: Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration. Optics Lett., 30 (10) (2005), 12311233.CrossRefGoogle ScholarPubMed
[9] Dahan, D.; Shumakher, E.; Eisenstein, G.: Self-starting ultralow-jitter pulse source based on coupled optoelectronic oscillators with an intracavity fiber parametric amplifier. Optics Lett., 30 (13) (2005), 16231625.CrossRefGoogle ScholarPubMed
[10] Devgan, P.; Serkland, D.; Keeler, G.; Geib, K.; Kumar, P.: An optoelectronic oscillator using an 850-nm VCSEL for generating low jitter optical pulses. IEEE Photonics Technol. Lett., 18 (5) (2006), 685687.CrossRefGoogle Scholar
[11] Nguimdo, R.M.; Chembo, Y.K.; Colet, P.; Larger, L.: On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators. IEEE J. Quantum Electron., 48 (11) (2012), 14151423.CrossRefGoogle Scholar
[12] Biswas, B.N.; Chatterjee, S.; Pal, S.: Laser induced microwave oscillator. IJECET, 3 (1) (2012), 211219.Google Scholar
[13] Biswas, B.N.: Phase Lock Theories and Applications, Oxford and IBH, New Delhi, 1988.Google Scholar
[14] Gonorovsky, I.: Radio Circuits & Signals, Mir Publisher, Moscow, 1974.Google Scholar
[15] Ray, S.K.; Pramanik, K.; Banerjee, P.; Biswas, B.N.: Locking characteristics of synchronized oscillators in presence of interference. IEEE Transact. Circuits Syst., CAS-27 (1) (1980), 6467.CrossRefGoogle Scholar
[16] Eliyahu, D.; Maleki, L.: Low phase noise and spurious level in multiloop optoelectronic oscillator, in Proc. IEEE Int. Frequency Control Symp., 2003, 504–410.Google Scholar
[17] Chatterjee, S.; Pal, S.; Biswas, B.N.: Poles movement in electronic and opto-electronic oscillators. Int. J. Electron., 2013, 100 (12) (2013), 16971713.CrossRefGoogle Scholar
[18] Yao, X.S.: High quality microwave signal generation by use of Brillouin scattering in optical fibers. Optics Lett., 22 (17) (1997), 13291331.CrossRefGoogle ScholarPubMed
[19] Maxin, J.; Pillet, G.; Steinhausser, B.; Morvan, L.; Llopis, O.; Dolfi, D.: Widely tunable opto-electronic oscillator based on a dual-frequency laser. J. Lightwave Technol., 31 (17) (2013), 29192925.CrossRefGoogle Scholar
[20] Callan, K. et al. : Broadband chaos generated by an opto-electronic oscillator. Phys. Rev. Lett., 104 (2010), Article ID 113901, 4.CrossRefGoogle Scholar
[21] Duy, N.L. et al. : Opto-electronic oscillator: application to sensors, in Proc. of the IEEE Int. Topical Meeting on Microwave Photon (MWP ‘08), October 2008, 131–134.Google Scholar
[22] Daryoush, A.S. et al. : Performance evaluation of opto-electronic oscillators employing photonic crystal fibers, in Proc. of the 36th European Microwave Conf., September 2006.CrossRefGoogle Scholar
[23] Gunn, C. et al. : A low phase noise 10 GHz optoelectronic RF oscillator implemented using CMOS photonics, in Proc. of the 54th IEEE International Solid-State Circuits Conf. (ISSCC ‘07), February 2007, 567–622.CrossRefGoogle Scholar