No CrossRef data available.
A fully flexible, high gain saw-tooth-shaped boundary fractal wearable patch antenna for WBAN applications
Published online by Cambridge University Press: 15 July 2022
Abstract
A flexible and high gain saw-tooth-shaped boundary fractal wearable antenna is anticipated for WBAN applications. A square shape is converted to the saw-tooth-shaped boundary by sequentially rotating the square at an angle of 45° and overlaid on one another and repeated the same for three iterations. The geometry is built on a flexible jeans substrate, and the total size of the anticipated antenna is 0.583λ × 0.583λ × 0.02λ at 2.4 GHz. A prototype has been made to test its suitability for wearable applications' gain, bandwidth, and efficiency. The results revealed that the proposed antenna provides an impedance bandwidth of 4.2% and a peak gain of 5.76 dBi at the 2.45 GHz ISM band. The anticipated antenna is wrapped around foam cylinders of radii 70 and 50 mm to test the stability and deformability of its performance. The full ground plane isolates the antenna from the human body contributing to the lower SAR values. The simulated maximum achieved specific absorption rate (SAR) of 0.3025 and 1.16 W/kg for 10 and 1 g of average tissue for the input power of 100 mW, respectively, found within the standards as per FCC. The peak gain, compact size, and SAR permanence made the anticipated antenna a worthy candidate for wearable on/off body applications.
Keywords
- Type
- Antenna Design, Modeling and Measurements
- Information
- International Journal of Microwave and Wireless Technologies , Volume 15 , Issue 5 , June 2023 , pp. 826 - 835
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press in association with the European Microwave Association