Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T07:56:42.506Z Has data issue: false hasContentIssue false

A dual band-notched ultra-wideband monopole antenna with spiral-slots and folded SIR-DGS as notch band structures

Published online by Cambridge University Press:  27 April 2015

Seyed Saeed Mirmosaei
Affiliation:
Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran
Seyed Ebrahim Afjei
Affiliation:
Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran
Esfandiar Mehrshahi
Affiliation:
Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran
Mohammad M. Fakharian*
Affiliation:
Department of Electrical and Computer Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran
*
Corresponding author: M.M. Fakharian Email: [email protected]

Abstract

In this paper, an ultra-wideband (UWB) planar monopole antenna with impedance bandwidth from 2.83 to 11.56 GHz and dual band-notched characteristics is presented. The antenna consists of a small rectangular ground plane, a bat-shaped radiating patch, and a 50-Ω microstrip line. The notched bands are realized by introducing two different types of structures. The half-wavelength spiral-slots are etched on the radiating patch to obtain a notched band in 5.15 5.925 GHz for WLAN, HIPERLAN, and DSRC systems. Based on the single band-notched UWB antenna, the second notched band is realized by etching a folded stepped impedance resonator as defected ground structure on the ground plane for WiMAX and C-band communication systems. The notched frequencies can be adjusted by altering the length of resonant cells. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fakharian, M.M.; Rezaei, P.: Very compact palmate leaf-shaped CPW-FED monopole antenna for UWB applications. Microw. Opt. Technol. Lett., 56 (2014), 16121616.CrossRefGoogle Scholar
[2] Wang, J.H.; Yin, Y.Z.; Liu, X.L.; Wang, T.: Trapezoid UWB antenna with dual band-notched characteristics for WiMAX/WLAN bands. Electron. Lett., 49 (2013), 685686.CrossRefGoogle Scholar
[3] Bod, M.; Hassani, H.R.; Samadi Taheri, M.M.: Compact UWB printed slot antenna with extra bluetooth, GSM, and GPS bands. IEEE Antennas Wireless Propag. Lett., 11 (2012), 531534.CrossRefGoogle Scholar
[4] Fakharian, M.M.; Rezaei, P.; Azadi, A.: A planar UWB bat-shaped monopole antenna with dual band-notched for WiMAX/WLAN/DSRC. Wireless Pers. Commun., 81 (2015), 881891.CrossRefGoogle Scholar
[5] Foudazi, A.; Hassani, H.R.; Nezhad, S.M.A.: Small UWB planar monopole antenna with added GPS/GSM/WLAN bands. IEEE Trans. Antennas Propag., 60 (2012), 29872992.CrossRefGoogle Scholar
[6] Abed, D.; Kimouche, H.: Design and characterization of microstrip UWB antennas, ultrawideband, in Lembrikov, B. (ed.), InTech, Sciyo, Croatia (2010), ISBN: 978-953-307-139-82.CrossRefGoogle Scholar
[7] Lee, W.S.; Lim, W.G.; Yu, J.W.: Multiple band-notched planar monopole antenna for multiband wireless systems. IEEE Microw. Wireless Compon. Lett., 15 (2005), 576578.Google Scholar
[8] Sung, Y.: Triple band-notched UWB planar monopole antenna using a modified H-shaped resonator. IEEE Trans. Antennas Propag., 61 (2013), 953957.CrossRefGoogle Scholar
[9] Sarkar, P.; Rakshit, I.; Adhikari, S.; Pal, M.; Ghatak, R.: A band notch UWB bandpass filter using dual-stub-loaded multimode resonator with embedded spiral resonator. Int. J. Microw. Wireless Technol., 6 (2014), 161166.CrossRefGoogle Scholar
[10] Li, W.T.; Hei, Y.Q.; Feng, W.; Shi, X.W.: Planar antenna for 3G/Bluetooth/WiMAX and UWB applications with dual band-notched characteristics. IEEE Antennas Wireless Propag. Lett., 11 (2012), 6164.Google Scholar
[11] Sharbati, V.; Rezaei, P.; Shahzadi, A.; Fakharian, M.M.: A planar UWB antenna based on MB-OFDM applications with switchable dual band-notched for cognitive radio systems. Int. J. Microw. Wireless Technol., available on CJO2014, doi:10.1017/S1759078714001317. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9384424 Google Scholar
[12] Azim, R.; Islam, M.T.: Compact planar UWB Antenna with band notch characteristics for WLAN and DSRC. Prog. Electrom. Res., 133 (2013), 391406.CrossRefGoogle Scholar
[13] Jiang, W.; Che, W.: A novel UWB antenna with dual notched bands for WiMAX and WLAN applications. IEEE Antennas Wireless Propag. Lett., 11 (2012), 293296.CrossRefGoogle Scholar
[14] Ojaroudi, M.; Ojaroudi, N.; Mirhashemi, S.A.: Bandwidth enhancement of small square monopole antenna with dual band-notch characteristics by using an H-ring slot and conductor backed plane for UWB applications. Appl. Comput. Electrom. Soc. J., 28 (2013), 6470.Google Scholar
[15] Sung, Y.: UWB monopole antenna with two notched bands based on the folded stepped impedance resonator. IEEE Antennas Wireless Propag. Lett., 11 (2012), 500502.CrossRefGoogle Scholar
[16] Chu, Q.-X.; Yang, Y.-Y.: A compact ultrawideband antenna with 3.4/5.5 GHz dual band-notched characteristics. IEEE Trans. Antennas Propag., 56 (2008), 36373644.CrossRefGoogle Scholar
[17] Farrokh-Heshmat, N.; Nourinia, J.; Ghobadi, Ch.: Band-notched ultra-wideband printed open-slot antenna using variable on-ground slits. Electron. Lett., 45 (2009), 10601061.CrossRefGoogle Scholar
[18] Valizade, A.; Ghobadi, Ch.; Nourinia, J.; Ojaroudi, M.: A novel design of reconfigurable slot antenna with switchable band notch and multiresonance functions for UWB applications. IEEE Antennas Wireless Propag. Lett., 11 (2012), 11661169.CrossRefGoogle Scholar
[19] Li, W.T.; Shi, X.W.; Hei, Y.Q.: Novel planar UWB monopole antenna with triple band-notched characteristics. IEEE Antennas Wireless Propag. Lett., 8 (2009), 10941098.Google Scholar
[20] Zheng, Z.-A.; Chu, Q.-X.; Tu, Z.-H.: Compact band-rejected ultrawideband slot antennas inserting with λ/2 and λ/4 resonators. IEEE Trans. Antennas Propag., 59 (2011), 390397.CrossRefGoogle Scholar
[21] Lee, D.-H.; Yang, H.-Y.; Cho, Y.-K.: Tapered slot antenna with band-notched function for ultrawideband radios. IEEE Antennas Wireless Propag. Lett., 11 (2012), 682685.Google Scholar
[22] Zhu, F.; Gao, S.; Ho, A.T.S.; Abd-Alhameed, R.A.; See, C.H.; Li, J.; Xu, J.: Miniaturized tapered slot antenna with signal rejection in 5–6-ghz band using a balun. IEEE Antennas Wireless Propag. Lett., 11 (2012), 507510.Google Scholar
[23] Yu, F.; Wang, C.: Design of a CPW-fed dual band-notched planar wideband antenna for UWB applications, ultrawideband communications: novel trends – antennas and propagation, in Dr. Matin, M. (ed.), InTech, Rijeka, Croatia (2011), ISBN: 978-953-307-452-8.CrossRefGoogle Scholar
[24] Wei, F.; Xu, L.; Shi, X.-W.; Liu, B.: Compact UWB bandpass filter with two notch bands based on folded SIR. Electron. Lett., 46 (2010), 16791680.CrossRefGoogle Scholar
[25] Ahmed, O.M.H.; Sebak, A.R.: A novel maple-leaf shaped UWB antenna with a 5.0–6.0 GHz band-notch characteristic. Prog. Electron. Res. C, 11 (2009), 3949.CrossRefGoogle Scholar
[26] Azenui, N.C.; Yang, H.Y.D.: A printed crescent patch antenna for ultrawideband applications. IEEE Antennas Wireless Propag. Lett., 6 (2007), 113116.CrossRefGoogle Scholar
[27] Ahmed, O.; Sebak, A.: A printed monopole antenna with two steps and a circular slot for UWB applications. IEEE Antennas Wireless Propag. Lett., 7 (2008), 411413.CrossRefGoogle Scholar
[28] Karmakar, N.C.; Roy, S.M.; Balbin, I.: Quasi-static modeling of defected ground structure. IEEE Trans. Microw. Theory Tech, 54 (2006), 21602168.CrossRefGoogle Scholar
[29] Garg, R.; Bahl, I.J.: Microstrip discontinuities. Int. J. Electron., 45 (1978), 8187.CrossRefGoogle Scholar