Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T17:16:07.417Z Has data issue: false hasContentIssue false

Dielectric material selection of microstrip patch antenna for wireless communication applications using Ashby's approach

Published online by Cambridge University Press:  14 July 2014

Priyanka Choudhary*
Affiliation:
Birla Institute of Technology and Science, Pilani, Rajasthan, India. Phone: +91(1596) 515674
Rajneesh Kumar
Affiliation:
Birla Institute of Technology and Science, Pilani, Rajasthan, India. Phone: +91(1596) 515674
Navneet Gupta
Affiliation:
Birla Institute of Technology and Science, Pilani, Rajasthan, India. Phone: +91(1596) 515674
*
Corresponding author: P. Choudhary Email: [email protected]

Abstract

In this paper, material selection has been done for dielectric substrate material in microstrip patch antenna (MPA) for three distinct classes of wireless communication applications using Ashby's approach. This material selection procedure is based on the creation and evaluation of Ashby's chart of different material indices. These material indices in turn affect the device performance indices, which decide the best possible dielectric material to be used as substrate for MPAs. In this work, quality factor, relative permittivity, and temperature coefficient of resonant frequency are chosen as material indices of MPA's dielectric substrate to get relevant performances. Ashby's selection chart shows that 0.75MgAl2O4–0.25TiO2 material for millimeter waves applications, Ca[(L1/3Nb2/3)0.85Ti0.15]O3−δ for mobile base station applications, and (Ba0.95Ca0.05)O–Sm2O3–4.5TiO2 ceramic for mobile phone miniaturization applications are the promising materials that allows best overall performance in MPAs for wireless communication.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ohsato, H.: Research and development of microwave dielectric ceramics for wireless communications. J. Ceram. Soc. Jpn., 113 (1323) (2005), 703711.CrossRefGoogle Scholar
[2]Buchanan, R.C.: Ceramic Materials for Electronics, Marcel Dekker, New York and Basel, 1986, 18.Google Scholar
[3]Sebastian, M.T.: Dielectric Materials for Wireless Communication, ScienceDirect, Elsevier, U.K., 2008.Google Scholar
[4]Hwang, Y.; Zhang, Y.P.; Zheng, G.X.; Lo, T.K.C.: Planar inverted F antenna loaded with high permittivity material. Electron. Lett., 31 (20) (1995), 17101712.Google Scholar
[5]Wu, J.; Lu, W.; Lei, W.; Wang, X.: Preparation of ZnAl2O4-based microwave dielectric ceramics and GPS antenna by aqueous gelcasting. Mater. Res. Bull., 46 (9) (2011), 14851489.CrossRefGoogle Scholar
[6]Liao, Q.; Li, L.; Zhanga, P.; Ding, X.; Ren, X.; Zhanga, W.: A microwave dielectric material for microstrip patch antenna substrate. J. Mater. Res., 26 (19) (2011), 25032510.Google Scholar
[7]Wee, F.H.; Malek, F.; Ghani, F.; Sreekantan, S.; Al-Amani, A.U.: High gain and high directive of antenna arrays utilizing dielectric layer on bismuth titanate ceramics. Int. J. Antennas Propag., 2012, Article ID 375751, 18.CrossRefGoogle Scholar
[8]National Magnetics Group. Dielectric Materials, TRAK Ceramics Inc.Google Scholar
[9]Park, S.H.; Ahn, W.K.; Kum, J.S.; Ji, J.K.; Kim, K.H.; Seong, W.M.: Electromagnetic properties of dielectric and magnetic composite material for antenna. Electron. Mater. Lett., 5 (2) (2009), 6771.Google Scholar
[10]Holland, S.S.: Minituarization of microstrip patch antennas for GPS application, May 2008.Google Scholar
[11]Suvorov, D.; valant, M.; Janear, B.; Skapin, S.D.: CaTiO3-based ceramics: microstructural development and dielectric properties. Acta Chim. Sloven., 48 (2001), 8799.Google Scholar
[12]Reddy, G.; Gupta, N.: Material selection for microelectronic heat sinks: an application of the Ashby approach. Mater. Des., 31 (1) (2010), 113117.Google Scholar
[13]Parate, O.; Gupta, N.: Material selection for electrostatic microactuators using Ashby approach. Mater. Des., 32 (3) (2011), 15771581.Google Scholar
[14]Sharma, A.K.; Gupta, N.: Material selection of RF-mems switch used for reconfigurable antenna using Ashby's methodology. Prog. Electromagn. Res. Lett., 31 (2012), 147157.Google Scholar
[15]Best, S.R.: The inverse relationship between quality factor and bandwidth in multiple resonant antennas, in Antenna and Propagation Society Int. Symp., 2006, 623–626.Google Scholar
[16]Gangwar, D.; Juyal, P.; De Mittal, A.: Enhancement of front to back ratio and directivity with wire medium ε-Near zero metamaterial as superstrate in microstrip patch radiators, in Indian Antenna Week, 2011, 1–4.Google Scholar
[17]Surendran, K.P.; Bijumon, P.V.; Mohanan, P.; Sebastian, M.T.: (1-x)MgAl2O4xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A, 81 (4) (2005), 823826.CrossRefGoogle Scholar
[18]Wanga, X.; Leia, W.; Lua, W.: Novel ZnAl2O4-based microwave dielectric ceramics with machinable property and its application for GPS antenna. Ferroelectrics, 388 (1) (2010), 8087.Google Scholar
[19]Kolodiazhnyi, T.; Petric, A.; Belous, A.; Vyuno, O.; Yannchevskij, O.: Synthesis and dielectric properties of barium tantalates and niobates with complex perovskite structure. J. Mater. Res., 17 (2002), 31823189.Google Scholar
[20]Ohsato, H. et al. : Microwave–millimetre wave dielectric materials. Key Eng. Mater, 269 (2004), 195198.CrossRefGoogle Scholar
[21]Guo, Y.; Ohsato, H.; Kakimoto, K.: Characterization and dielectric behaviour of willemite and TiO2-doped willemite ceramics at millimetre wave frequency. J. Eur. Ceram. Soc., 26 (2006), 18271830.Google Scholar
[22]Huang, C.-L.; Weng, M.-H.: Improved high Q values of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperatures. Mater. Res. Bull., 36 (2001), 27412750.Google Scholar
[23]Kim, D.-J.; Hahn, J.-W.; Han, G.-P.; Lee, S.-S.; Choy, T.-G.: Effects of alkaline-earthmetal addition on the sinterability and microwave characteristics of (Zr,Sn)TiO4 dielectrics. J. Am. Ceram. Soc., 83 (2000), 10101012.Google Scholar
[24]Michiura, N.; Tatekawa, T.; Higuchi, Y.; Tamura, H.: Role of donor and acceptor ions in the dielectric loss tangent of (Zr0.8Sn0.2)TiO4 dielectric resonator materials. J. Am. Ceram. Soc., 78 (1995), 793796.Google Scholar
[25]Kucheiko, S.; Choi, J.-W.; Kim, H.-J.; Jung, H.-J.: Microwave dielectric properties of CaTiO3–Ca(Al1/2Ta1/2)O3 ceramics. J. Am. Ceram. Soc., 79 (1996), 27392743.Google Scholar
[26]Jancar, B.; Suvrorov, D.; Valant, M.: Microwave dielectric properties of CaTiO3–NdAlO3 ceramics. J. Mater. Sci. Lett., 20 (2001), 7172.Google Scholar
[27]Zheng, H.; de Gyorgyfalva, G.D.C.; Reaney, I.M.: Microstructure and microwave properties of CaTiO3–LaGaO3 solid solutions. J. Mater. Sci., 40 (2005), 52075214.Google Scholar
[28]Choi, J.W.; Kang, C.-Y.; Yoon, S.-J.; Kim, H.-J.; Jung, H.-J.; Yoon, K.H.: Microwave dielectric properties of Ca[(Li1/3Nb2/3)1–xMx]O3_[M = Sn, Ti] ceramics. J. Mater. Res., 14 (1999), 35673570.Google Scholar
[29]Takada, T.; Kageyama, K.; Yonemura, M.; Hara, N.; Tako, S.: Microwave dielectric properties of mixed phase ceramics, Ba(Zn1/3Ta2/3)O3xCaTiO3 and xMgTiO3yCaTiO3z (Nd2O3–wTiO2). J. Mater. Sci. Mater. Electron., 14 (2005), 205214.Google Scholar
[30]Surendran, K.P.; Sebastian, M.T.; Mohanan, P.; Jacob, M.V.: The effects of dopants on the microwave dielectric properties of Ba(Mg0.33Ta0.67)O3 ceramics. J. Appl. Phys., 98 (2005), 094114.Google Scholar
[31]Fang, L.; Yu, Q.; Zhang, H.; Hu, C.Z.; Wu, B.: Microwave dielectric properties of a new A5B4O15 type cation deficient perovskite Ba2La3Ti3TaO15. J. Am. Ceram. Soc., 90 (2007), 16261628.Google Scholar
[32]Sebastian, M.T.; Santha, N.; Bijumon, P.V.; Axelsson, A.-K.;Alford, Mc N.: Microwave dielectric properties of (1–x)CeO2xCaTiO3 and (1–x)CeO2xSm2O3 ceramics. J. Eur. Ceram. Soc., 24 (2004), 25832589.Google Scholar
[33]Khoei, P.R.; Azough, F.; Freer, R.: The influence of ZnNb2O6 on the microwave dielectric properties of ZrTi2O6 ceramics. J. Am. Ceram. Soc., 89 (2006), 216223.Google Scholar
[34]Yang, C.-F.; Chan, C.-C.; Cheng, C.-M.; Chen, Y.-C.: The sintering and microwave dielectric characteristics of MgTa1.5Nb0.5O6 ceramics. J. Eur. Ceram. Soc., 25 (2005), 28492852.Google Scholar
[35]Cheng, C.-M.; Chen, Y.-C.; Yang, C.-F.; Chen, C.-C.: Sintering and compositional effects on the microwave dielectric characteristics of Mg(Ta1–xNbx)2O6 ceramics with 0.2_x_0.35. J. Electro. Ceram., 18 (2007), 155160.Google Scholar
[36]Feteira, A.; Elsebrock, R.; Dias, A.; Moreira, R.L.; Lanagan, M.T.; Sinclair, D.C.: Synthesis and characterisation of La0.4Ba0.6Ti0.6RE0.4O3 [RE = Y,Yb] ceramics. J. Eur. Ceram. Soc., 26 (2006), 19471951.CrossRefGoogle Scholar
[37]Kim, W.; Kim, D.Y.; Hong, K.S.: Phase relations and microwave dielectric properties of ZnNb2O6–TiO2. J. Mater. Res., 15 (2000), 13311335.Google Scholar
[38]Kato, J.; Kagata, H.; Nishimoto, K.: Dielectric properties of (Pb,Ca)(Me,Nb)O3 at microwave frequencies. Jpn. J. Appl. Phys., 31 (1992), 31443147.Google Scholar
[39]Kato, J.: Material produces small resonators with high dielectric constant. Jpn. Electron. Eng., 9, (1991), 114118.Google Scholar
[40]Wakino, K.; Minai, K.; Tamura, H.: Microwave characteristics of (Zr, Sn)TiO4 and BaO–Nd2O3–TiO2 dielectric resonators. J Am. Ceram. Soc., 67 (1984), 278281.CrossRefGoogle Scholar
[41]Kim, E.S.; Jeon, J.S.; Yoon, K.H.: Effect of sintering method on the microwave dielectric properties of (Pb0.45Ca0.55)(Fe0.5Nb0.5)O3 ceramics. J. Eur. Ceram. Soc., 23 (2003), 25832587.Google Scholar
[42]Li, Y.; Chen, X.M.: Effects of sintering conditions on microstructures and microwave dielectric properties of Ba6–3x(Sm1–yNdy)8þ2xTi18O54 ceramics (x = 2/3). J. Eur. Ceram. Soc., 22 (2002), 715719.Google Scholar
[43]Imaeda, M.; Ito, K.; Mizuta, M.; Ohsato, H.; Nishigaki, S.; Okuda, T.: Microwave dielectric properties of Ba6–3xSm8þ2xTi18O54 solid solutions with Sr substituted for Ba. Jpn. J Appl. Phys., 36 (1997), 60126015.Google Scholar
[44]Belous, A.G.; Ovchar, O.V.: MW dielectrics with perovskite like structure based on Sm containing systems. J. Eur. Ceram. Soc., 19 (1999), 11191122.Google Scholar
[45]Chen, Y.C.: Microwave dielectric properties of (Mg(1-x)Cox)2SnO4 ceramics for application in dual-band inverted-E-shaped monopole antenna. IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 58 (12) (2011), 25312538.Google Scholar
[46]Kretly, L.C.; Almeida, A.F.L.; Fechine, P.B.A.; de Oliveira, R.S.; Sombra, A.S.B.: Dielectric permittivity and loss of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas. J. Mater. Sci.: Mater. Electron., 15 (10) (2004), 657663.Google Scholar
[47]Chen, Y.; Chen, M.: Microwave dielectric properties of novel ceramic for application in wireless communications, In European Conf. Applications of Polar Dielectrics and Int. Symp. Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials, 2012, 1–4.Google Scholar