Design of wideband orthogonal MIMO antenna with improved correlation using a parasitic element for mobile handsets
Published online by Cambridge University Press: 15 September 2014
Abstract
In this paper, a novel design of compact wideband multiple-input multiple-output (MIMO) antenna operating over a frequency range of 1.8–4.0 GHz at 10 dB is presented for mobile terminals. The MIMO antenna design consists of two symmetrical and orthogonal radiating elements with a small size of 15.5 × 16.5 mm2 printed on the corners of a mobile circuit board. The radiating element is composed of four meandered monopole branches with a strip-line fed by a probe. By triangularly trimming the corners of the common ground plane beneath the radiating elements, not only the mutual coupling is reduced, but also impedance bandwidth is increased. Although, the antenna in this form has sufficient correlation level between the radiating elements for MIMO operation, a novel design of plus-shaped parasitic element is inserted to the ground plane between those radiating elements in order to further enhance the isolation. The performance of the MIMO antenna is investigated in terms of s-parameters, radiation pattern, gain, envelope correlation coefficient (ECC), and total active reflection coefficient (TARC), and is verified through the measurements. The results demonstrate that the proposed MIMO antenna has good characteristics of wideband, isolation, gain, radiation pattern, and is compatible with LTE, WiMAX, and WLAN, besides it is small, compact, and embeddable in mobile terminals.
Keywords
- Type
- Research Papers
- Information
- International Journal of Microwave and Wireless Technologies , Volume 8 , Issue 1 , February 2016 , pp. 109 - 115
- Copyright
- Copyright © Cambridge University Press and the European Microwave Association 2014
References
REFERENCES
- 8
- Cited by