Hostname: page-component-f554764f5-nwwvg Total loading time: 0 Render date: 2025-04-23T03:57:49.428Z Has data issue: false hasContentIssue false

Design of polarization reconfigurable Koch fractal antenna for S-and C-band applications

Published online by Cambridge University Press:  23 December 2024

Khushbu Patel*
Affiliation:
Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela, India
Santanu Kumar Behera
Affiliation:
Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela, India
*
Corresponding author: Khushbu Patel; Email: [email protected]

Abstract

In this research, a novel polarization reconfigurable fractal antenna with high gain is proposed for wideband applications. This antenna consists of a Koch curve based hexagonal ring patch, two Positive-Intrinsic-Negative (PIN) diodes, and partial ground. The patch is positioned on a Rogers RT/Duroid 5880 substrate (ϵr = 2.2) with overall dimensions 33 × 30 × 1.6 mm3. It has three frequency bands with three different cases i.e., case I, 3–7.91 (90%); case II, 3–7.73 (88.16%); and case III, 3.54–6.7 GHz (61.7%). As a result, the proposed antenna’s impedance bandwidth (IBW) offers constant wideband coverage ranging from 3–7.91 GHz (90%). The axial ratio bandwidth (ARBW) is below 3 dB over 3.6–6.9 (62.86%) and 3.33–7.14 GHz (72.78%) for LHCP (Case I) and RHCP modes (Case II), respectively. The value for LP mode (Case III) is 3.54–6.7 GHz (61.7%). A peak realized gains of 4.75, 5.07, and 3.8 dBi are achieved at 6.2, 6.3, and 6 GHz for Case I, Case II, and Case III, respectively. Both linear and circular polarization prototype was developed and the performance was verified through measurements. The design confirms good polarization-reconfigurable characteristics within the band of 3.91 – 7.91 GHz.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with The European Microwave Association.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Mamta, NV (2024) Frequency reconfigurable circular microstrip G-slotted antenna with DGS for various wireless applications. International Journal of Microwave and Wireless Technologies 16(3), 110. doi:10.1017/S1759078724000242Google Scholar
Li, T, Zhai, H, Wang, X, Li, L and Liang, C (2015) Frequency-reconfigurable bow-tie antenna for Bluetooth, WiMAX, and WLAN applications. IEEE Antennas and Wireless Propagation Letters 14, 17174. doi:10.1109/LAWP.2014.2359199Google Scholar
Reji, V and Manimegalai, CT (2023) Light controlled frequency reconfigurable antenna for wireless applications. International Journal of Microwave and Wireless Technologies 15(1), 143149. doi:10.1017/S1759078722000137CrossRefGoogle Scholar
Kumar, R, Singh, S, Singh, C and Pal, A (2022) Multiband antenna design based on Gosper fractal for implantable biomedical devices. International Journal of Microwave and Wireless Technologies 14(8), 970980. doi:10.1017/S1759078721001203Google Scholar
Ezzahry, B, Elhamadi, T-E, Lasalle, M and Touhami, NA (2023) New method based on genetic algorithm and Minkowski fractal for multiband antenna designs. International Journal of Microwave and Wireless Technologies 112. doi:10.1017/S1759078723001071Google Scholar
Hao, ZC, Fan, KK and Wang, H (2017) A planar polarization-reconfigurable antenna. IEEE Transactions on Antennas and Propagation 65(4), 16241632. doi:10.1109/TAP.2017.2670440CrossRefGoogle Scholar
Saraswat, K and Harish, AR (2020) Dual-band polarisation reconfigurable grounded fractal slot antenna. IET Microwaves, Antennas & Propagation 14(14), 17861790. doi:10.1049/iet-map.2020.0542CrossRefGoogle Scholar
Chen, Q, Li, JY, Yang, G, Cao, B and Zhang, Z (2019) A polarization-reconfigurable high-gain microstrip antenna. IEEE Transactions on Antennas and Propagation 67(5), 34613466. doi:10.1109/TAP.2019.2902750Google Scholar
Panahi, A, Bao, XL, Yang, K, O’Conchubhair, O and Ammann, MJ (2015) A simple polarization reconfigurable printed monopole antenna. IEEE Transactions on Antennas and Propagation 63(11), 51295134. doi:10.1109/TAP.2015.2474745CrossRefGoogle Scholar
Li, QY, Tran, HH and Park, HC (2018) Reconfigurable antenna with multiple linear and circular polarization diversity for WLAN applications. Microwave and Optical Technology 60(12), 28932899. doi:10.1002/mop.31411Google Scholar
Bhattacharjee, A, Dwari, S and Mandal, MK (2019) Polarization-reconfigurable compact monopole antenna with wide effective bandwidth. IEEE Antennas and Wireless Propagation Letters 18(5), 10411045. doi:10.1109/LAWP.2019.2908661CrossRefGoogle Scholar
Qin, PY, Weily, AR, Guo, YJ and Liang, CH (2010) Polarization reconfigurable U-slot patch antenna. IEEE Transactions on Antennas and Propagation 58(10), 33833388. doi:10.1109/TAP.2010.2055808CrossRefGoogle Scholar
Mak, KM, Lai, HW, Luk, K and Ho, KL (2017) Polarization reconfigurable circular patch antenna with a C-shaped. IEEE Transactions on Antennas and Propagation 65(3), 13881392. doi:10.1109/TAP.2016.2640141Google Scholar
Lee, SW and J, SY (2016) Simple polarization-reconfigurable antenna with T-shaped feed. IEEE Antennas and Wireless Propagation Letters 15, 114117. doi:10.1109/LAWP.2015.2432462CrossRefGoogle Scholar
Reddy, VV and Sarma, NVSN (2015) Circularly polarized frequency reconfigurable Koch antenna for GSM/Wi-Fi applications. Microwave and Optical Technology Letters 57(12), 28952898. doi:10.1002/mop.29463CrossRefGoogle Scholar
Poonam, T and Falguni, R (2020) Fork-shaped frequency and pattern reconfigurable antenna. International Journal of Communication Systems 33(17), 111. doi:10.1002/dac.4613Google Scholar
Chandra, KV, Satyanarayana, M and Battula, KT (2020) A novel miniature hexagonal shape switched pattern and frequency reconfigurable antenna. International Journal of Communication Systems 33(5), 18. doi:10.1002/dac.4264Google Scholar
Jose, MC, Chithra, D, Sreeja, R, S., B, Meraline, S and Radha, S (2019) A novel wideband pattern reconfigurable antenna using switchable parasitic stubs. Microwave and Optical Technology Letters 61(4), 10901096. doi:10.1002/mop.31698CrossRefGoogle Scholar
Jin, GP, Li, ML, Xu, YC, Yang, J and Liao, SW (2020) Differentially fed six-beam switchable reconfigurable antenna. IET Microwaves, Antennas & Propagation 14(7), 573577. doi:10.1049/iet-map.2019.0622Google Scholar
Pandav, S, Sadhukhan, G, Das, TK, Behera, SK and Mohanty, M (2022) Circularly polarized high gain Koch fractal antenna for space applications. Sādhanā 47(4), . doi:10.1007/s12046-022-02047-2Google Scholar
Darimireddy, NK, Reddy, RR and Prasad, AM (2018) A miniaturized hexagonal-triangular fractal antenna for wide-band applications [antenna applications corner]. IEEE Antennas and Propagation Magazine 60(2), 104110. doi:10.1109/MAP.2018.2796441Google Scholar
Bhattacharjee, A and Dwari, S (2021) A monopole antenna with reconfigurable circular polarization and pattern tilting ability in two switchable wide frequency bands. IEEE Antennas and Wireless Propagation Letters 20(9), 16611665. doi:10.1109/LAWP.2021.3092345CrossRefGoogle Scholar
Huang, J, Shirazi, M and Gong, X (2022) A new arraying technique for band-switchable and polarization-reconfigurable antenna arrays with wide bandwidth. IEEE Open Journal of Antennas and Propagation 3, 10251040. doi:10.1109/OJAP.2022.3201617CrossRefGoogle Scholar
Das, TK, Das, R, Kumar, A, Kumari, R, Mandal, P, Mukhi, RK and Pradhan, JD (2023) Modified fractal-based polarization-reconfigurable patch antenna for 2.4 GHz ISM band applications. International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), 0105. 10.1109/WiSPNET57748.2023.10134042Google Scholar
Patel, K and Behera, SK (2023) A miniaturized wideband fractal antenna combining Sierpinski and Minkowski fractals. In 3rd International Conference on Range Technology (ICORT), 14. 10.1109/ICORT56052.2023.10249058CrossRefGoogle Scholar
Patel, K and Behera, SK (2023) Design of frequency reconfigurable hybrid fractal antenna for wireless applications. In IEEE Microwaves, Antennas, and Propagation Conference (MAPCON) Ahmedabad, India, 15. doi: 10.1109/MAPCON58678.2023.10463919CrossRefGoogle Scholar
Balanis, CA (2015) Microstrip Antennas. Antenna Theory: Analysis and Design, 3rd edn. John Wiley & Sons.Google Scholar
Bhattacharjee, A and Dwari, S (2021) Wideband monopole antenna with circular polarization reconfigurability and pattern diversity. In 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), Jaipur, Rajasthan, India, 957960. doi: 10.1109/InCAP52216.2021.9726343CrossRefGoogle Scholar
Toh, BY, Cahill, R and Fusco, VF (2003) Understanding and measuring circular polarization. IEEE Transactions on Education 46(3), 313318. doi:10.1109/TE.2003.813519Google Scholar
Patel, K, Pandav, S and Behera, SK (2024) Reconfigurable fractal devices. IEEE Microwave Magazine 25(7), 4162. doi:10.1109/MMM.2024.3387037Google Scholar
Patel, K and Behera, SK (2023) Design of Koch curve-based fractal antenna for ultra-wideband applications. In 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Ahmedabad, India, 15. doi: 10.1109/MAPCON58678.2023.10464044CrossRefGoogle Scholar
Abdelgwad, AH (2018) Microstrip patch antenna enhancement techniques. International Scholarly and Scientific Research and Innovation 12(10), 703710.Google Scholar
Akinola, S, Hashimu, I and Singh, G (2019) Gain and bandwidth enhancement techniques of microstrip antenna: A technical review. In 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 175180. doi: 10.1109/ICCIKE47802.2019.9004278CrossRefGoogle Scholar
Kumar, A, Gupta, N and Gautam, PC (2016) Gain and bandwidth enhancement techniques in microstrip patch antennas - A review. International Journal of Computer Applications 148(7), 914. doi:10.5120/ijca2016911207CrossRefGoogle Scholar