Published online by Cambridge University Press: 05 January 2012
A novel topology for millimeter-wave-integrated transformers is proposed. The windings are stacked and secondaries are designed with different trace widths and different diameters from that of the primary, in order to obtain relatively high-inductance transformation ratios. Measurement and simulation results of 65 nm Complementary Metal Oxide Semiconductor (CMOS) and 130 nm combination of Bipolar and CMOS (BiCMOS) transformers present the impact of this structure on the inductances, quality factor, coupling coefficient, and minimum insertion loss. Within certain limits on the trace widths, it is shown that the proposed topology not only increases the transformation ratio but also improves its overall performance.