Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T17:51:56.907Z Has data issue: false hasContentIssue false

Design of high transformation ratio millimeter-wave integrated transformers

Published online by Cambridge University Press:  05 January 2012

Bernardo Leite*
Affiliation:
IMS Laboratory, University of Bordeaux, 33405 Talence Cedex, France
Eric Kerhervé
Affiliation:
IMS Laboratory, University of Bordeaux, 33405 Talence Cedex, France
Jean-Baptiste Bégueret
Affiliation:
IMS Laboratory, University of Bordeaux, 33405 Talence Cedex, France
Didier Belot
Affiliation:
STMicroelectronics, 38926 Crolles Cedex, France
*
Corresponding author: B. Leite Email: [email protected]

Abstract

A novel topology for millimeter-wave-integrated transformers is proposed. The windings are stacked and secondaries are designed with different trace widths and different diameters from that of the primary, in order to obtain relatively high-inductance transformation ratios. Measurement and simulation results of 65 nm Complementary Metal Oxide Semiconductor (CMOS) and 130 nm combination of Bipolar and CMOS (BiCMOS) transformers present the impact of this structure on the inductances, quality factor, coupling coefficient, and minimum insertion loss. Within certain limits on the trace widths, it is shown that the proposed topology not only increases the transformation ratio but also improves its overall performance.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Niknejad, A.M.; Meyer, R.G.: Analysis, design, and optimization of spiral inductors and transformers for Si RFIC's. IEEE J. Solid-State Circuits, 33 (10) (1998), 14701481.Google Scholar
[2]Long, J.R.: Monolithic transformers for silicon RF IC design. IEEE J. Solid-State Circuits, 35–39 (2000), 13681382.Google Scholar
[3]Ng, K.T.; Rejaei, B.; Burghartz, J.N.: Substrate effects in monolithic RF transformers on silicon. IEEE Trans. Microw. Theory Tech., 50 (1) (2002), 377383.Google Scholar
[4]El-Gharniti, O.; Kerherve, E.; Begueret, J.B.: Modeling and characterization of on-chip transformers for Silicon RFIC. IEEE Trans. Microw. Theory Tech., 55 (4) (2007), 607615.Google Scholar
[5]Dickson, T.O.; LaCroix, M.A.; Boret, S.; Gloria, D.; Beerkens, R.; Voinigescu, S.P.: 30–100-GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits. IEEE Trans. Microw. Theory Tech., 53 (1) (2005), 123133.Google Scholar
[6]Chowdhury, D.; Reynaert, P.; Niknejad, A.M.: Design considerations for 60 GHz transformer-couple CMOS power amplifiers. IEEE J. Solid-State Circuits, 44 (10) (2009), 27332744.Google Scholar
[7]Chen, C.-Z.; Lin, Y.-S.; Chen, C.-C.; Yeh, P.-F.; Chang, J.-F.: High-coupling and ultra-low-loss interlaced stacked transformers for 60–100 GHz CMOS RFIC applications, in IEEE Radio and Wireless Symp., Orlando, FL, USA, 2007.Google Scholar
[8]LaRocca, T.; Liu, J.Y.-C.; Chang, M.-C.F.: 60 GHz CMOS amplifiers using transformer-coupling and artificial dielectric differential transmission lines for compact design. IEEE J. Solid-State Circuits, 44 (5) (2009), 14251435.CrossRefGoogle Scholar
[9]Rotella, F.M.; Cismaru, C.; Tkachenko, Y.G.; Cheng, Y.; Zampardi, P.J.: Characterization, design, model validation of silicon on-wafer M:N balun components under matched and unmatched conditions. IEEE J. Solid-State Circuits, 41 (5) (2006), 12011209.Google Scholar
[10]Lim, C.C. et al. : An area efficient high turn ratio monolithic transformer for silicon RFIC, in IEEE Radio Frequency Integrated Circuits Symp., Atlanta, GA, USA, 2008.Google Scholar
[11]Chan, W.L.; Long, J.R.; Spirito, M.; Pekarik, J.J.: A 60 GHz-Band 1 V 11.5 dBm power amplifier with 11% PAE in 65 nm CMOS, in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, San Francisco, CA, USA, 2009.Google Scholar
[12]Cheung, T.S.D.; Long, J.R.: Design and modeling of mm-wave monolithic transformers, in IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Maastricht, Netherlands, 2006.Google Scholar
[13]Belot, D.; Leite, B.; Kerhervé, E.; Bégueret, J.-B.: Millimeter-wave transformer with a high transformation factor and a low insertion loss, U.S. Patent Application 12/787,782, May 26, 2010.Google Scholar
[14]Leite, B.; Kerhervé, E.; Bégueret, J.-B.; Belot, D.: Shielding structures for millimeter-wave integrated transformers, in 16th IEEE Int. Conf. Electronics, Circuits and Systems, Yasmine-Hammamet, Tunisia, 2009.Google Scholar
[15]Grover, F.W.: Inductance Calculations, Van Nostrand, Princeton, NJ, 1946.Google Scholar
[16]Avenier, G. et al. : 0.13 µm SiGe BiCMOS technology fully dedicated to mm-wave applications. IEEE J. Solid-State Circuits, 44 (9) (2009), 23122321.CrossRefGoogle Scholar
[17]Unterweissacher, M.; Brandtner, T.; Pribyl, W.: Inductance formulas adapted for direct use in Spice simulators. IET Electron. Lett., 44 (2) (2008), 9293.Google Scholar