Hostname: page-component-f554764f5-nwwvg Total loading time: 0 Render date: 2025-04-22T03:29:55.035Z Has data issue: false hasContentIssue false

Design and analysis of an energy selective rasorber

Published online by Cambridge University Press:  13 October 2023

Kun Yan
Affiliation:
Nanjing University of Aeronautics and Astronautics, Nanjing, China
Yi Wang*
Affiliation:
Nanjing University of Aeronautics and Astronautics, Nanjing, China State Key Laboratory of Millimeter Waves, Nanjing, China
Xiaofan Min
Affiliation:
Nanjing University of Aeronautics and Astronautics, Nanjing, China
Lei Tang
Affiliation:
Nanjing University of Aeronautics and Astronautics, Nanjing, China
Yu Xia
Affiliation:
Nanjing University of Aeronautics and Astronautics, Nanjing, China
You Li
Affiliation:
Nanjing Electronic Equipment Institute, Nanjing, China
*
Corresponding author: Yi Wang; Email: [email protected]

Abstract

By combining the technique of energy selective surface and frequency selective rasorber, an energy selective rasorber is proposed, which performs selective energy protection in the low communication frequency band (0.8–2 GHz) and wave-absorbing property in the high-frequency band (6–18 GHz). The design consists of two layers, of which the bottom one contains a lumped diode structure for energy selection function in the transmission band, while together with the top layer, they perform a wideband wave absorbing function. The simulated and measured results agree well with each other, and both show good absorption in 6–18 GHz and energy-selective property around 1.86 GHz. That is, when the incident power changes from −30 to 14 dBm, the reflection coefficient changes from below −22 dB to above −2 dB, while the transmission coefficient changes from above −3 dB to below −17 dB.

Type
Metamaterials and Photonic Bandgap Structures
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Munk, BA (2000) Frequency Selective Surfaces: Theory and Design. New York: John Wiley & Sons.10.1002/0471723770CrossRefGoogle Scholar
Capolino, F (2009) Theory and Phenomena of Metamaterials. Boca Raton, FL: CRC Press.Google Scholar
Wang, Y, Chen, K, Li, Y and Cao, Q (2021) Design of non-resonant metasurfaces for broadband RCS reduction. IEEE Antennas and Wireless Propagation Letters 20(3), 346350.10.1109/LAWP.2021.3049882CrossRefGoogle Scholar
Fu, C, Han, L, Liu, C, Sun, Z and Lu, X (2021) Dual-band polarization conversion metasurface for RCS reduction. IEEE Transactions on Antennas and Propagation 69(5), 30443049.10.1109/TAP.2020.3028148CrossRefGoogle Scholar
Choudhary, A, Pal, S and Sarkhel, G (2022) Broadband millimeter-wave absorbers: A review. International Journal of Microwave and Wireless Technologies 15, 347363.10.1017/S1759078722000162CrossRefGoogle Scholar
Katko, AR, Hawkes, AM, Barrett, JP and Cummer, SA (2011) RF limiter metamaterial using p-i-n diodes. IEEE Antennas and Wireless Propagation Letters 10, 15711574.10.1109/LAWP.2011.2182490CrossRefGoogle Scholar
Li, M and Behdad, N (2013) Frequency selective surfaces for pulsed high-power microwave applications. IEEE Transactions on Antennas and Propagation 61(2), 677687.10.1109/TAP.2012.2225133CrossRefGoogle Scholar
Zhao, C, Wang, CF and Aditya, S (2019) Power-dependent frequency-selective surface: Concept, design, and experiment. IEEE Transactions on Antennas and Propagation 67(5), 32153220.10.1109/TAP.2019.2900408CrossRefGoogle Scholar
Bakshi, SC, Mitra, D and Teixeira, F (2020) FSS-based fully reconfigurable rasorber with enhanced absorption bandwidth and simplified bias network. IEEE Transactions on Antennas and Propagation 68(11), 11.10.1109/TAP.2020.3008615CrossRefGoogle Scholar
Wu, B, Yang, Y-J, Li, H-L, Zhao, Y-T, Fan, C and Lu, W-B (2020) Low-loss dual-polarized frequency-selective rasorber with graphene-based planar resistor. IEEE Transactions on Antennas and Propagation 68(11), 11.10.1109/TAP.2020.2998173CrossRefGoogle Scholar
Chen, H, Lu, WB, Liu, ZG and Jiang, ZH (2020) Flexible rasorber based on graphene with energy manipulation function. IEEE Transactions on Antennas and Propagation 68(1), 351359.10.1109/TAP.2019.2938743CrossRefGoogle Scholar
Wang, Y, Min, X, Zhao, M, Yuan, H, Li, R, Hu, X and Cao, Q (2022) Design of a frequency selective rasorber with a waveform selective passband. IEEE Antennas and Wireless Propagation Letters 21(10), 21252129.10.1109/LAWP.2022.3193006CrossRefGoogle Scholar
Zhou, L and Shen, Z (2022) Diffusive energy-selective surface with low backscattering. IEEE Transactions on Antennas and Propagation 70(1), 430439.10.1109/TAP.2021.3098603CrossRefGoogle Scholar
Zhou, L, Liu, L and Shen, Z (2021) High-performance energy selective surface based on the double-resonance concept. IEEE Transactions on Antennas and Propagation 69(11), 76587666.10.1109/TAP.2021.3075548CrossRefGoogle Scholar
Zhou, L and Shen, Z (2021) 3-D absorptive energy-selective structures. IEEE Transactions on Antennas and Propagation 69(9), 56645672.10.1109/TAP.2021.3061097CrossRefGoogle Scholar