Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T19:04:54.894Z Has data issue: false hasContentIssue false

A concurrent 915/2440 MHz RF energy harvester

Published online by Cambridge University Press:  22 February 2016

Ludvine Fadel*
Affiliation:
Laboratoire IMS, UMR – 5218, Université de Bordeaux, 33405 Talence Cedex, France. Phone: +33 540 002 615
Laurent Oyhenart
Affiliation:
Laboratoire IMS, UMR – 5218, Université de Bordeaux, 33405 Talence Cedex, France. Phone: +33 540 002 615
Romain Bergès
Affiliation:
Laboratoire IMS, UMR – 5218, Université de Bordeaux, 33405 Talence Cedex, France. Phone: +33 540 002 615
Valérie Vigneras
Affiliation:
Laboratoire IMS, UMR – 5218, Université de Bordeaux, 33405 Talence Cedex, France. Phone: +33 540 002 615
Thierry Taris
Affiliation:
Laboratoire IMS, UMR – 5218, Université de Bordeaux, 33405 Talence Cedex, France. Phone: +33 540 002 615
*
Corresponding author: L. Fadel Email: [email protected]

Abstract

This paper presents the development of two dual-band radio-frequency (RF) harvesters optimized to convert far-field RF energy to DC voltage at very low received power. The first one is based on a patch antenna and the second on a dipole antenna. They are both implemented on a standard FR4 substrate with commercially off-the-shelf devices. The two RF harvesters provide a rectified voltage of 1 V for a combined power, respectively, of −19.5 dBm at 915 MHz, −25 dBm at 2.44 GHz, of −20 dBm at 915 MHz, and −15 dBm at 2.44 GHz. The remote powering of a clock consuming 1 V/5 µA is demonstrated, and the rectenna yields a power efficiency of 12%.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Paing, T. et al. : Wirelessly powered wireless sensor platform, in Eur. Microwave Conf. Digests, Munich, Germany, October 2007, 241–244.CrossRefGoogle Scholar
[2]Bernhard, J.; Hietpas, K.; George, E.; Kuchima, D.; Reis, H.: An interdisciplinary effort to develop a wireless embedded sensor system to monitor and assess corrosion in the tendons of pre-stressed concrete girders, in Proc. IEEE Top. Conf. Wireless Communications, 2003, 241–243.Google Scholar
[3]Walsh, C.; Rondineau, S.; Jankovic, M.; Zhao, G.; Popovic, Z.: A conformal 10-GHz rectenna for wireless powering of piezoelectric sensor electronics, in IEEE MTT-S Int. Microwave Symp. Digeast, June 2005, 143–146.Google Scholar
[4]Zhao, X. et al. : Active health monitoring of an aircraft wing with an embedded piezoelectric sensor/actuator network. Smart Mater. Struct., 16 (2007) (2007), 12181225.CrossRefGoogle Scholar
[5]Lin, K. et al. : Heliomote: Enabling long-lived sensor networks through solar energy harvesting, in 3rd Int. Conf. Embedded Networked Sensor Systems, November 2005, 309.Google Scholar
[6]Paradiso, J.A.; Starner, T.: Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput., 4 (1) (2005), 1827.Google Scholar
[7]Foster, K.R.: A world awash with wireless devices. IEEE Microw. Mag., 14 (2) (2013), 7384.Google Scholar
[8]Le, T.; Mayaram, K.; Fiez, T.: Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE J. Solid-State Circuits, 43 (5) (2008), 12871302.CrossRefGoogle Scholar
[9]Hirai, J.; Kim, T.W.; Kawamura, A.: Wireless transmission of power and information for cableless linear motor drive. IEEE Trans. Power Electron., 15 (2000), 2127.CrossRefGoogle Scholar
[10]Nishimoto, H.; Kawahara, Y.; Asami, T.: Prototype implementation of ambient RF energy harvesting wireless sensor networks. in IEEE SENSORS 2010 Conference, 2010, pp.12821287.Google Scholar
[11]Shinohara, B.N.: Power without wires. IEEE Microw. Mag., 12 (7) (2011), S64S73.Google Scholar
[12]Pinuela, M.; Mitcheson, P.D.; Lucyszyn, S.: Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans. Microw. Theory Tech., 61 (7) (2013), 27152726.CrossRefGoogle Scholar
[13]Hemour, S.; Wu, K.: Radio-frequency rectifier for electromagnetic energy harvesting: developement path and future outlook. Proc. IEEE, 102 (11) (2014), 16671691.Google Scholar
[14]Taris, T.; Fadel, L.; Oyhenart, L.; Vigneras, V.: COTS-based modules for far-field radio frequency, in IEEE NEWCAS, Paris, France, June 2013, 1–4.Google Scholar
[15]Shrestha, S.; Noh, S.-K.; Choi, D.-Y.: Comparative study of antenna designs for RF energy harvesting. Int. J. Antennas Propag. Volume 2013, 10 pp..Google Scholar
[16]Sim, Z.W.; Shuttleworth, R.; Alexander, M.J.; Grieve, B.D.: Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks. Prog. Electromagn. Res., 105 (2010), 273294.Google Scholar
[17]Hasan, N.; Giri, S.K.: Design of low power RF to DC generator for energy harvesting application. Int. J. Appl. Sci. Eng. Res., 1 (4) (2012), 562568.Google Scholar
[18]Visser, H.J.: Summary and Conclusions, in Approximate Antenna Analysis for CAD, John Wiley & Sons, Ltd, Chichester, UK, 2009. doi: 10.1002/9780470986394.ch7.Google Scholar
[19]Berges, R.; Fadel, L.; Oyhenart, L.; Vigneras, V.; Taris, T.: A dual band 915 MHz/2.44 GHz RF energy harvester, in EUMW, Paris France, September 2015.Google Scholar
[20]Lu, Y-Y.; Guo, J., Huang, H-C.: Design of triple symmetric arms dipole antenna for 900/1800/2450 MHz applications, in Conf. on Intelligent Information Hiding and Multimedia Signal Processing, 2014.Google Scholar
[21]Masotti, D.; Costanzo, A.; Del Prete, M.; Rizzoli, V.: Genetic-based design of a tetra-band high-efficiency radio-frequency energy harvesting system. IET Microw. Antennas Propag., 7 (15) (2013), 12541263.CrossRefGoogle Scholar
[22]Veram, G.; Georgiadis, A.; Collado, A.; Via, S.: Design of a 2.45 GHz rectenna for electromagnetic (EM) energy scavenging, in Proc. of IEEE Radio and Wireless Symp., 2010, 61–64.Google Scholar
[23]Niotaki, K.; Kim, S.; Jeong, S.; Collado, A.; Georgiadis, A.; Tentzeris, M.: A compact dual-band rectenna using slot-loaded dual band folded dipole antenna. IEEE Antennas Wireless Propag. Lett., 12 (2013), 16341637.Google Scholar
[24]Song, C.; Huang, Y.; Zhou, J.; Zhang, J.; Yuan, S.; Carter, P.: A high-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Trans. Antennas Propag., 63 (2015), 34863495.Google Scholar