Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-02T19:39:53.532Z Has data issue: false hasContentIssue false

A compact semi-lumped tunable complex-impedance transformer

Published online by Cambridge University Press:  08 September 2009

Anne-Laure Perrier*
Affiliation:
Laboratory of Microwaves and Characterization (LAHC), University of Savoie, 73376 Le Bourget-du-Lac, France. (Email: [email protected])
Jean-Marc Duchamp
Affiliation:
Institute of Microelectronics, Electromagnetism and Photonics (IMEP), UMR 5130 CNRS, INPG-UJF, BP 257, 38016 Grenoble Cedex 1, France. (Emails: [email protected]; [email protected]; [email protected])
Olivier Exshaw
Affiliation:
Institute of Microelectronics, Electromagnetism and Photonics (IMEP), UMR 5130 CNRS, INPG-UJF, BP 257, 38016 Grenoble Cedex 1, France. (Emails: [email protected]; [email protected]; [email protected])
Robert Harrison
Affiliation:
Department of Electronics, Carleton University, Ottawa K1S 5B6, Canada. (Email: [email protected])
Philippe Ferrari
Affiliation:
Institute of Microelectronics, Electromagnetism and Photonics (IMEP), UMR 5130 CNRS, INPG-UJF, BP 257, 38016 Grenoble Cedex 1, France. (Emails: [email protected]; [email protected]; [email protected])
*
Corresponding author: Anne-Laure Perrier Email: [email protected]

Abstract

This article describes the design and performance of a compact tunable impedance transformer. The structure is based on a transmission line loaded by varactor diodes. Using only two pairs of diodes, the circuit is very small with a total length of only λ/10. Both the frequency range and the load impedance can be tuned by varying the varactor bias voltages. Our design provides a tunable operating frequency range of ±40% and an impedance match ranging from 20 to 90 Ω at 0.8 GHz and from 30 to 170 Ω at 1.5 GHz. In addition, a new approach that considers losses for the simulation and measurement of this impedance transformer was investigated. The measured performance of a 1 GHz prototype design confirmed the validity of this new approach.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Sun, Y.; Fidler, J.K.: Design of Π impedance matching networks. IEEE Int. Circuits Syst. Symp., 5 (1994), 58.Google Scholar
[2]Hirota, T.; Minakawa, A.; Muraguchi, M.: Reduced-size branch-line and rat-race hybrids for uniplanar MMIC's. IEEE Trans. Microwave Theory Tech., 38 (3) (1990), 125131.CrossRefGoogle Scholar
[3]Bischof, W.: Variable impedance tuner for MMIC's. IEEE Microwave Guided Wave Lett., 4 (6) (1994), 172174.CrossRefGoogle Scholar
[4]Collins, C.E.; Pollard, R.D.; Miles, R.E.: A novel MMIC source impedance tuner for on-wafer microwave noise parameter measurements, In IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp. Dig., 1996, 123126.Google Scholar
[5]McIntosh, C.E.; Pollard, R.D.; Miles, R.E.: Novel MMIC source-impedance tuners for on-wafer microwave noise-parameter measurements. IEEE Trans. Microwave Theory Tech., 47 (2) (1999), 125131.CrossRefGoogle Scholar
[6]Sinsky, J.H.; Westgate, C.R.: Design of an electronically tunable microwave impedance transformer, In IEEE MTT-S Int. Microwave Theory Tech. Symp. Dig., 1997, 647650.Google Scholar
[7]Jung, S.; Kan, K.; Park, J.H.; Chung, K.W.; Kim, Y.K.; Kwon, Y.: Micromachined frequency-variable impedance tuners using resonant unit cells, In IEEE MTT-S Int. Microwave Theory Tech. Symp. Dig., 2001, 333336.Google Scholar
[8]Kim, H.T.; Jung, S.; Kang, K.; Park, J.H.; Kim, Y.K.; Kwon, Y.: Low-loss analog and digital micromachined impedance tuners at the Ka-band. IEEE Trans. Microwave Theory Tech., 49 (12) (2001), 23942400.Google Scholar
[9]De Mingo, J.; Valdovinos, A.; Crespo, A.; Navarro, D.; Garcia, P.: An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system. IEEE Trans. Microwave Theory Tech., 52 (2) (2004), 489497.CrossRefGoogle Scholar
[10]Vaha-Heikkila, T.; Varis, J.; Tuovinen, J.; Rebeiz, G.M.: A 20–50 GHz RF MEMS single-stub impedance tuner. IEEE Microwave Wireless Compon. Lett., 15 (4) (2005), 205207.CrossRefGoogle Scholar
[11]Lange, K.L.; Papapolymerou, J.; Goldsmith, C.L.; Malczewski, A.; Kleber, J.: A reconfigurable double-stub tuner using MEMS devices, In IEEE Int. Microwave Theory Tech. Symp. Dig., Vol. 1, 2001, 337340.Google Scholar
[12]Papapolymerou, J.; Lange, K.L.; Goldsmith, C.; Malczewski, A.; Kleber, J.: Reconfigurable double-stub tuners using MEMS switches for intelligent RF front-ends. IEEE Trans. Microwave Theory Tech., 51 (1) (2003), 271278.CrossRefGoogle Scholar
[13]Zheng, G.; Kirby, P.L.; Pajic, S.; Pothier, A.; Papapolymerou, J.; Popovic, Z.: A monolithic reconfigurable tuner with ohmic contact MEMS switches for efficiency optimization of X-band power amplifiers, In Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2004, 159162.CrossRefGoogle Scholar
[14]Vaha-Heikkila, T.; Varis, J.; Tuovinen, J.; Rebeiz, G.M.: A reconfigurable 6–20 GHz RF MEMS impedance tuner, In IEEE Int. Microwave Theory Tech. Symp. Dig., 2004, 729732.Google Scholar
[15]Watley, R.B.; Zhou, Z.; Medle, K.L.: Reconfigurable RF impedance tuner for match control in broadband wireless devices. IEEE Trans. Antennas Propagat., 54 (2) (2006), 470478.CrossRefGoogle Scholar
[16]Qiao, D.; Molfino, R.; Lardizabal, S.M.; Pillans, B.; Asbeck, P.M.; Jerinic, G.: An intelligently controlled RF power amplifier with a reconfigurable MEMS-varactor tuner. IEEE Trans. Microwave Theory Tech., 53 (3) (2005), 10891095.CrossRefGoogle Scholar
[17]Jrad, A.; Perrier, A.L.; Bourtoutian, R.; Duchamp, J.M.; Ferrari, P.: Design of an ultra compact electronically tunable microwave impedance transformer. Electron. Lett., 41 (12) (2005), 777–709.CrossRefGoogle Scholar
[18]Jeong, H.T.; Kim, J.E.; Chang, I.S.; Kim, C.D.: Tunable impedance transformer using a transmission line with variable characteristic impedance. IEEE Trans. Microwave Theory Tech., 53 (8) (2005), 25872593.CrossRefGoogle Scholar
[19]Chun, Y.H.; Hong, J.S.: Variable Zc transmission line and its application to a tunable impedance transformer, in 35th European Microwave Conf., 2005, 893896.Google Scholar
[20]Shen, Q.; Barker, N.S.: A reconfigurable RF MEMS based double slug impedance tuner, in 35th European Microwave Conf., Paris, 2005, 537540.Google Scholar
[21]Lu, Y.; Katehi, L.P.B.; Peroulis, D.: A novel MEMS impedance tuner simultaneously optimized for maximum impedance range and power handling, In IEEE Int. Microwave Theory Tech. Symp. Dig., Long Beach, 2005, 927930.Google Scholar
[22]Vaha-Heikkila, T.; Rebeiz, G.M.: A 20–50 GHz reconfigurable matching network for power amplifier applications, In IEEE Int. Microwave Theory Tech. Symp. Dig., Forth Worth, Vol. 2, 2004, 717721.Google Scholar
[23]Pienkowski, D.; Wiatr, W.: Broadband electronic impedance tuner, in 14th Int. Conf. Microwaves Radar and Wireless Communications, Mikon, Vol. 1, 2002, 310313.Google Scholar
[24]Perrier, A.L.; Ferrari, P.; Duchamp, J.M.; Vincent, D.: A varactor tunable complex impedance transformer, in 34th European Microwave Conf., Amsterdam, Netherlands, Vol. 1, 2004, 301303.Google Scholar
[25]Pistono, E.; Perrier, A.L.; Bourtoutian, R.; Kaddour, D.; Jrad, A.; Duchamp, J.M.; Duvillaret, L.; Vincent, D.; Vilcot, A.; Ferrari, P.: Hybrid tunable microwave devices based on Schttky–Diode varactors. Proc. Eur. Microwave Assoc. (Special issue on Front'end Solution Cell. Commun. Terminals), 12 (2005), 109116.Google Scholar
[26]Mathematica, version 4.0.Google Scholar
[27]Frickey, D.A.: Conversions between S, Z, Y, h, ABCD and T parameters which are valid for complex source and load impedance. IEEE Trans. Microwave Theory Tech., 42 (2) (1994), 205211.CrossRefGoogle Scholar
[28]Programmable Tuner, Focus Microwaves, 1808–2C model.Google Scholar